Advertisement

Autonomous Robots

, Volume 5, Issue 1, pp 111–125 | Cite as

Learning View Graphs for Robot Navigation

  • Matthias O. Franz
  • Bernhard Schölkopf
  • Hanspeter A. Mallot
  • Heinrich H. Bülthoff
Article

Abstract

We present a purely vision-based scheme for learning a topological representation of an open environment. The system represents selected places by local views of the surrounding scene, and finds traversable paths between them. The set of recorded views and their connections are combined into a graph model of the environment. To navigate between views connected in the graph, we employ a homing strategy inspired by findings of insect ethology. In robot experiments, we demonstrate that complex visual exploration and navigation tasks can thus be performed without using metric information.

visual navigation topological maps environment modeling exploration cognitive maps mobile robots omnidirectional sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachelder, I.A. and Waxman, A.M. 1995. A view-based neurocomputational system for relational map-making and navigation in visual environments. Robotics and Autonomous Systems, 16:267- 289.CrossRefGoogle Scholar
  2. Brooks, R.A. 1986. A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, RA-2(1).Google Scholar
  3. Cartwright, B.A. and Collett, T.S. 1983. Landmark learning in bees. J. Comp. Physiol. A, 151:521-543.Google Scholar
  4. Chahl, J.S. and Srinivasan, M.V. 1996. Visual computation of egomotion using an image interpolation technique. Biol. Cybern., 74:405-411.Google Scholar
  5. Collett, T.S. 1992. Landmark learning and guidance in insects. Phil. Trans. R. Soc. Lond. B, 337:295-303.Google Scholar
  6. Collett, T.S. 1996. Insect navigation en route to the goal: Multiple strategies for the use of landmarks. J. Exp. Biol., 199:227-235.Google Scholar
  7. Franz, M.O., Schölkopf, B., and Bülthoff, H.H. 1997. Homing by parameterized scene matching. In Fourth Europ. Conf. on Artificial Life, P. Husbands and I. Harvey (Eds.), MIT Press: Cambridge, MA, pp. 236-245.Google Scholar
  8. Franz, M.O., Schölkopf, B., Georg, P., Mallot, H.A., and Bülthoff, H.H. 1997. Learning view graphs for robot navigation. In Proc. 1. Intl. Conf. on Autonomous Agents, W.L. Johnson (Ed.), ACM Press: New York, pp. 138-147.Google Scholar
  9. Gallistel, R. 1990. The Organization of Learning, MIT Press: Cambridge, MA.Google Scholar
  10. Gillner, S. and Mallot, H.A. 1997. Navigation and acquisition of spatial knowledge in a virtual maze. J. Cognitive Neuroscience. In press.Google Scholar
  11. Goldman, S. 1953. Information Theory, Dover: New York.Google Scholar
  12. Hong, J., Tan, X., Pinette, B., Weiss, R., and Riseman, E.M. 1991. Image-based homing. In Proc. IEEE Intl. Conf. on Robotics and Automation, pp. 620-625.Google Scholar
  13. Kuipers, B.J. and Byun, Y. 1991. A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Robotics and Autonomous Systems, 8:47-63.CrossRefGoogle Scholar
  14. Lieblich, I. and Arbib, M.A. 1982. Multiple representations of space underlying behavior. Behavioral and Brain Sciences, 5:627-659.Google Scholar
  15. Mallot, H., Bülthoff, H., Georg, P., Schölkopf, B., and Yasuhara, K. 1995. View-based cognitive map learning by an autonomous robot. In Proc. ICANN'95-Int. Conf. on Artificial Neural Networks, F. Fogelman-Soulié and P. Gallinari (Eds.) EC2, Nanterre, France, Vol. II, pp. 381-386.Google Scholar
  16. Mataric, M.J. 1991. Navigating with a rat brain: Aneurobiologically-inspired model for robot spatial representation. In From Animals to Animats, J.-A. Meyer and S.W. Wilson (Eds.), MIT Press: Cambridge, MA.Google Scholar
  17. O'Keefe, J. and Nadel, L. 1978. The Hippocampus as a Cognitive Map, Clarendon Press: Oxford.Google Scholar
  18. O'Neill, M.J. 1991. Evaluation of a conceptual model of architectural legibility. Environment and Behavior, 23:259-284.Google Scholar
  19. Piaget, J. and Inhelder, B. 1967. The Child's Conception of Space, Norton: New York.Google Scholar
  20. Poucet, B. 1993. Spatial cognitive maps in animals: New hypotheses on their structure and neural mechanisms. Psychological Rev., 100:163-182.CrossRefGoogle Scholar
  21. Röfer, T. 1995. Controlling a robot with image-based homing. Center for Cognitive Sciences, Bremen, Report 3/95.Google Scholar
  22. Schölkopf, B. and Mallot, H.A. 1995. View-based cognitive mapping and path planning. Adaptive Behavior, 3:311-348.Google Scholar
  23. Thrun, S. 1995. Exploration in active learning. In The Handbook of Brain Theory and Neural Networks, M.A. Arbib (Ed.), MIT Press, pp. 381-384.Google Scholar
  24. Tolman, E.C. 1932. Purposive Behavior of Animals and Men, Irvington: New York.Google Scholar
  25. Wehner, R., Michel, B., and Antonsen, P. 1996. Visual navigation in insects: Coupling of egocentric and geocentric information. J. Exp. Biol., 199:129-140.Google Scholar
  26. Yagi, Y., Nishizawa, Y., and Yachida, M. 1995. Map-based navigation for a mobile robot with omnidirectional image sensor COPIS. IEEE Trans. Robotics Automat., 11:634-648.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Matthias O. Franz
    • 1
  • Bernhard Schölkopf
    • 1
  • Hanspeter A. Mallot
    • 1
  • Heinrich H. Bülthoff
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenGermany

Personalised recommendations