Advertisement

Transgenic Research

, Volume 7, Issue 2, pp 77–84 | Cite as

Insect resistance of transgenic tobacco expressing an insect chitinase gene

  • Xiongfei Ding
  • Bhuvana Gopalakrishnan
  • Lowell B. Johnson
  • Frank F. White
  • Xiaorong Wang
  • Thomas D. Morgan
  • Karl J. Kramer
  • Subbaratnam Muthukrishnan
Article

Abstract

Chitinase expression in the insect gut normally occurs only during moulting, where the chitin of the peritrophic membrane is presumably degraded. Thus, insects feeding on plants that constitutively express an insect chitinase gene might be adversely affected, owing to an inappropriately timed exposure to chitinase. This hypothesis was tested by introducing a cDNA encoding a tobacco hornworm (Manduca sexta) chitinase (EC 3.2.1.14) into tobacco via Agrobacterium tumefaciens-mediated transformation. A truncated but enzymatically active chitinase was present in plants expressing the gene. Segregating progeny of high-expressing plants were compared for their ability to support growth of tobacco budworm (Heliothis virescens) larvae and for feeding damage. Both parameters were significantly reduced when budworms fed on transgenic tobacco plants expressing high levels of the chitinase gene. In contrast, hornworm larvae showed no significant growth reduction when fed on the chitinase-expressing transgenics. However, both budworm and hornworm larvae, when fed on chitinase-expressing transgenic plants coated with sublethal concentrations of a Bacillus thuringiensis toxin, were significantly stunted relative to larvae fed on toxin-treated non-transgenic controls. Foliar damage was also reduced. Plants expressing an insect chitinase gene may have agronomic potential for insect control

Bacillus thuringiensis toxin Heliothis virescens Manduca sexta Nicotiana tabacum tobacco budworm tobacco hornworm chitinase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, P.P., Nelson, R.S., De, B., Hoffmann, N., Rogers, S.G., Fraley, R.T. and Beachy, R.N. (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738-43.Google Scholar
  2. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. (1989) Current Protocols in Molecular Biology. New York: Greene Publishing Associates/Wiley Interscience.Google Scholar
  3. Boulter, D., Edwards, G.A., Gatehouse, A.M.R., Gatehouse, J.A. and Hilder, V.A. (1990) Additive protective effects of different plant-derived insect resistance genes in transgenic tobacco plants. Crop Protection 9, 351-4.Google Scholar
  4. Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, J. and Broglie, R. (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254, 1194-7.Google Scholar
  5. Fuhrman, J.A., Lane, W.S., Smith, R.F., Piessens, W.F. and Perler, F.B. (1992) Transmission-blocking antibodies recognize microfilarial chitinase in brugian lymphatic filariasis. Proc. Natl Acad. Sci. USA 89, 1548-52.Google Scholar
  6. Gatehouse, A.M.R., Shi, Y., Powell, K.S., Brough, C., Hilder, V.A., Hamilton, W.D.O., Newell, C.A., Merryweather, A., Boulter, D. and Gatehouse, J.A. (1993) Approaches to insect resistance using transgenic plants. Phil. Trans. R. Soc. Lond. B 342, 279-86.Google Scholar
  7. Gopalakrishnan, B., Muthukrishnan, S. and Kramer, K.J. (1995) Baculovirus-mediated expression of a Manduca sexta chitinase gene: properties of the recombinant protein. Insect Biochem. Mol. Biol. 25, 255-65.Google Scholar
  8. Huber, M., Cabib, E. and Miller, L.H. (1991) Malaria parasite chitinase and penetration of the mosquito peritrophic membrane. Proc. Natl Acad. Sci. USA 88, 2807-10.Google Scholar
  9. Jach, G., Görnhardt, B., Mundy, J., Logemann, J., Pinsdorf, E., Leah, R., Schell, J. and Maas, C. (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J. 8, 97-109.Google Scholar
  10. Kaiser, J. (1996) Pests overwhelm Bt cotton crop. Science 273, 423.Google Scholar
  11. Koga, D., Funakoshi, T., Mizuki, K., Ide, A., Kramer, K.J., Zen, K.C., Choi, H. and Muthukrishnan, S. (1992) Immunoblot analysis of chitinolytic enzymes in integument and molting fluid of the silkworm, Bombyx mori, and the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 22, 305-11.Google Scholar
  12. Koga, D., Jilka, J., Speirs, R.D. and Kramer, K.J. (1983) Immunological relationships between β-N-acetylglucosaminidases from the tobacco hornworm, Manduca sexta (L.). Insect Biochem. 13, 407-10.Google Scholar
  13. Koziel, M.G., Beland, G.L., Bowman, C., Carozzi, N.B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., Maddox, D., McPherson, K., Meghji, M.R., Merlin, E., Rhodes, R., Warren, G.W., Wright, M. and Evola, S.V. (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11, 194-200.Google Scholar
  14. Kramer, K.J., Dziadik-Turner, C. and Koga, D. (1985) Chitin metabolism in insects. In Kerkut, G.A. and Gilbert, L.I. eds., Comprehensive Insect Physiology, Biochemistry and Pharmacology Vol. 3, pp. 75-115. New York, USA: Pergamon Press.Google Scholar
  15. Kramer, K.J., Corpuz, L., Choi, H.K. and Muthukrishnan, S. (1993) Sequence of a cDNA and expression of the gene encoding epidermal and gut chitinases of Manduca sexta. Insect Biochem. Mol. Biol. 23, 691-701.Google Scholar
  16. Kramer, K.J., Muthukrishnan, S., Johnson, L. and White, F. (1996) Chitinases for insect control. In Carozzi, N. and Koziel, M. eds., Advances in Insect Control: Transgenic Plants for the Control of Insect Pests, pp. 185-93. Washington DC, USA: Taylor and Francis Publishers.Google Scholar
  17. Lin, W., Anuratha, C.S., Datta, K., Potrykus, I., Muthukrishnan, S. and Datta, S.K. (1995) Genetic engineering of rice for resistance to sheath blight. Bio/Technology 13, 686-91.Google Scholar
  18. Masoud, S.A., Johnson, L.B., White, F.F. and Reeck, G.R. (1993) Expression of cysteine proteinase inhibitor (oryzacystatin-I) in transgenic tobacco plants. Plant Mol. Biol. 21, 655-63.Google Scholar
  19. McGaughey, W.H. and Whalon, M.E. (1992) Managing insect resistance to Bacillus thuringiensis toxins. Science 258, 1451-5.Google Scholar
  20. Morris, O.N. (1976) A 2-year study of the efficacy of Bacillus thuringiensis-chitinase combinations in spruce budworm (Choristoneura fumiferana) control. Can. Entomol. 108, 225-33.Google Scholar
  21. Peters, W. (1992) Peritrophic Membranes, Zoophysiology 30. Berlin, Germany: Springer-Verlag.Google Scholar
  22. Regev, A., Keller, M., Strizhov, N., Sneh, B., Prudovsky, E., Chet, I., Ginzberg, I., Koncz-Kalman, Z., Koncz, C., Schell, J. and Zilberstein, A. (1996) Synergistic activity of a Bacillus thuringiensis δ-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Applied Environ. Microbiology 62, 3581-6.Google Scholar
  23. Rogers, S.G., Klee, H.J., Horsch, R.B. and Fraley, R.T. (1987) Improved vectors for plant transformation: expression cassette vectors and new selectable markers. Meth. Enzymol. 153, 253-77.Google Scholar
  24. Ryerse, J.S., Purcell, J.P., Sammons, R.D. and Lavrik, P.B. (1992) Peritrophic membrane structure and formation in the larvae of a moth, Heliothis. Tiss. Cell. 24, 751-71.Google Scholar
  25. Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press.Google Scholar
  26. SAS Institute. (1991) SAS/STAT User's Guide, release 6.03. Cary, NC, USA: SAS Institute.Google Scholar
  27. Shapiro, M., Preisler, H.K. and Robertson, J.L. (1987) Enhancement of baculovirus activity on gypsy moth (Lepidoptera: Lymantriidae) by chitinase. J. Econ. Entomol. 80, 1113-6.Google Scholar
  28. Smirnoff, W.A. (1971) Effect of chitinase on the action of Bacillus thuringiensis. Can. Entomol. 103, 1829-31.Google Scholar
  29. Smirnoff, W.A. (1974) Three years of aerial field experiments with Bacillus thuringiensis plus chitinase formulation against the spruce budworm. J. Invert. Pathol. 24, 344-8.Google Scholar
  30. Sneh, B., Schuster, S. and Gross, S. (1983) Improvement of the insecticidal activity of Bacillus thuringiensis var. entomocidus on larvae of Spodoptera littoralis (Lepidoptera, Noctuidae) by addition of chitinolytic bacteria, a phagostimulant and a UV-protectant. Z. Angew. Entomol. 96, 77-83.Google Scholar
  31. Thomas, J.C., Adams, D.G., Keppenne, V.D., Wasmann, C.C., Brown, J.K., Kanost, M.R. and Bohnert, H.J. (1995a) Manduca sexta encoded protease inhibitors expressed in Nicotiana tabacum provide protection against insects. Plant Physiol. Biochem. 33, 611-4.Google Scholar
  32. Thomas, J.C., Adams, D.G., Keppenne, V.D., Wasmann, C.C., Brown, J.K., Kanost, M.R. and Bohnert, H.J. (1995b) Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant Cell Rep. 14, 758-62.Google Scholar
  33. Trudel, J., Potvin, C. and Asselin, A. (1995) Secreted hen lysozyme in transgenic tobacco: recovery of bound enzyme and in vitro growth inhibition of plant pathogens. Plant Sci. 106, 55-62.Google Scholar
  34. Vierheilig, H., Alt, M., Neuhaus, J.M., Boller, T. and Wiemken, A. (1993) Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mosseae. Mol. Plant-Microbe Interact. 6, 261-4.Google Scholar
  35. Wang, X., Ding, X., Gopalakrishnan, B., Morgan, T., Johnson, L., White, F.F., Muthukrishnan, S. and Kramer, K.J. (1996) Characterization of a 46 kDa insect chitinase from transgenic tobacco. Insect Biochem. Mol. Biol. 26, 1055-64.Google Scholar
  36. Wiwat, C., Lertcanawanichakul, M., Siwayapram, P., Pantuwatana, S. and Bhumiratana, A. (1996) Expression of chitinase-encoding genes from Pseudomonas maltophila in Bacillus thuringiensis subsp. israelensis. Gene 179, 119-26.Google Scholar
  37. Zen, K.C., Choi, H.K., Krishnamachari, N., Muthukrishnan, M. and Kramer, K. (1996) Cloning, expression, and hormonal regulation of an insect β-N-acetylglucosaminidase gene. Insect Biochem. Mol. Biol. 26, 435-44.Google Scholar
  38. Zhu, Q., Maher, E.A., Masoud, S., Dixon, R.A. and Lamb, C.J. (1994) Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technology 12, 807-12.Google Scholar

Copyright information

© Chapman and Hall 1998

Authors and Affiliations

  • Xiongfei Ding
    • 1
  • Bhuvana Gopalakrishnan
    • 2
  • Lowell B. Johnson
    • 1
  • Frank F. White
    • 1
  • Xiaorong Wang
    • 2
  • Thomas D. Morgan
    • 3
  • Karl J. Kramer
    • 3
  • Subbaratnam Muthukrishnan
    • 2
  1. 1.Department of Plant PathologyKansas State UniversityManhattanUSA
  2. 2.Department of BiochemistryKansas State UniversityManhattanUSA
  3. 3.US Department of AgricultureUS Grain Marketing Research Laboratory, Agricultural Research ServiceManhattanUSA

Personalised recommendations