Statistics and Computing

, Volume 9, Issue 1, pp 3–8 | Cite as

Delete-m Jackknife for Unequal m

  • Frank M. T. A. Busing
  • Erik Meijer
  • Rien Van Der Leeden


In this paper, the delete-mj jackknife estimator is proposed. This estimator is based on samples obtained from the original sample by successively removing mutually exclusive groups of unequal size. In a Monte Carlo simulation study, a hierarchical linear model was used to evaluate the role of nonnormal residuals and sample size on bias and efficiency of this estimator. It is shown that bias is reduced in exchange for a minor reduction in efficiency. The accompanying jackknife variance estimator even improves on both bias and efficiency, and, moreover, this estimator is mean-squared-error consistent, whereas the maximum likelihood equivalents are not.

jackknife Monte Carlo simulation hierarchical linear model (un)balanced samples maximum likelihood estimation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Busing, F. M. T. A. (1993) Distribution characteristics of variance estimates in two-level models; A Monte Carlo study (Tech. Rep. No. PRM 93-04). Leiden, The Netherlands: Leiden University, Department of Psychology.Google Scholar
  2. Busing, F. M. T. A., Meijer, E. and Van der Leeden, R. (1994) MLA, software for multilevel analysis of data with two levels. User's guide for version 1.0b (Tech. Rep. No. PRM 94-01). Leiden, The Netherlands: Leiden University, Department of Psychology.Google Scholar
  3. Efron, B. (1982) The jackknife, the bootstrap and other resampling plans. Philadelphia: SIAM.Google Scholar
  4. Goldstein, H. (1995) Multilevel statistical models (2nd ed.). Lon-don: Edward Arnold.Google Scholar
  5. Kreft, I. and de Leeuw, J. (1998) Introduction to multilevel mod-elling. London: Sage.Google Scholar
  6. Longford, N. T. (1993) Random coeffcient models. Oxford, GB: Clarendon Press.Google Scholar
  7. Lüscher, M. (1994) A portable high-quality random number generator for lattice field theory simulations. Computer Physics Communications, 79, 100-110.Google Scholar
  8. Magnus, J. R. (1978) Maximum likelihood estimation of the GLS model with unknown parameters in the disturbance covari-ance matrix. Journal of Econometrics, 7, 281-312.Google Scholar
  9. Quenouille, M. H. (1956) Notes on bias in estimation. Biometrika, 43, 353-360.Google Scholar
  10. Schucany, W. R., Gray, H. L. and Owen, D. B. (1971) On bias reduction in estimation. Journal of the American Statistical Association, 66(335), 524-533.Google Scholar
  11. Searle, S. R., Casella, G. and McCulloch, C. E. (1992) Variance components. New York: Wiley.Google Scholar
  12. Shao, J. and Tu, D. (1995) The jackknife and bootstrap. New York: Springer.Google Scholar
  13. Tukey, J. W. (1958) Bias and confidence in not-quite large sam-ples. Annals of Mathematical Statistics, 29, 614.Google Scholar
  14. Wolter, K. M. (1985) Introduction to variance estimation. New York: Springer.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Frank M. T. A. Busing
  • Erik Meijer
  • Rien Van Der Leeden

There are no affiliations available

Personalised recommendations