Genetic Resources and Crop Evolution

, Volume 47, Issue 3, pp 257–265 | Cite as

Assessment of genetic relationships among Pyrus species and cultivars using AFLP and RAPD markers

  • Luísa Monte-Corvo
  • Luís Cabrita
  • Cristina Oliveira
  • José Leitão
Article

Abstract

Twenty-five Pyrus communis L. cultivars including eight traditional Portuguese pears, and four commercial Pyrus pyrifolia (Burm.) Nak. (Japanese pear or `nashi') cultivars were analysed by RAPD and AFLP techniques focusing on their molecular discrimination and the assessment of their genetic relatedness. Twenty-five primers generated 324 RAPD markers, among which 271 (84%) were polymorphic. The AFLP technique, using seven primer combinations, revealed a similar level of molecular polymorphisms (87%), representing 418 polymorphic bands among a total of 478 scored in autoradiographs. The high reproducibility of RAPD and AFLP techniques was confirmed comparing DNA samples from different extractions and different digestions of DNA from the same plant. Three genetic similarity matrices and respective dendrograms were elaborated on using RAPD, AFLP or joint RAPD and AFLP data. Both molecular marker techniques proved their reliability to assess genetic relationships among pear cultivars. P. pyrifolia cultivars exhibit a closer genetic relatedness, clustering apart from P. communis cultivars. Within P. communis, `William's', as well as `Doyenne du Comice', cluster close to their hybrids. Most of the Portuguese cultivars tend to cluster together, indicating to constitute a relatively independent genetic pool, which can be of interest in pear breeding programs.

AFLP genetic similarity molecular markers pears Pyrus RAPD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, R.L., 1990. Pears. In: Moore, J.N. & J.R. Ballington, (Eds), Genetic Resources of Temperate Fruit and Nut Crops, pp. 657–696. International Society for Horticultural Science, Wageningen, The Netherlands.Google Scholar
  2. Bell, R.L., H.A. Quamme, R.E.C. Layne & R.M. Skirvin, 1996. Pears. In: Janick, J. & J.N. Moore, (Eds), Fruit Breeding, Vol I: Tree and Tropical Fruits, pp. 441–514. John Wiley & Sons, Inc., New York, NY.Google Scholar
  3. Botta, R., A. Akkak, G. Me, L. Radicati & V. Casavecchia, 1998. Identification of pear cultivars by molecular markers. Acta Horticulturae 457: 63–70.Google Scholar
  4. Cervera, M.T., J. Gusmão, M. Steenackers, A.V. Gysel, M.V. Montagu & W. Boerjan, 1996. Application of AFLPTM-based molecular markers to breeding of Populus spp. Plant Growth Reg. 20: 47–52.Google Scholar
  5. Cerezo, M. & R. Socias-I-company, 1989. Isoenzymatic variability in pear pollen. Acta Horticulturae 256: 111–118.Google Scholar
  6. Chevreau, E., S. Leuliette & M. Gallet, 1997. Inheritance and linkage of isozyme loci in pear (Pyrus communis L.). Theor. Appl. Genet. 94: 498–506.Google Scholar
  7. Chung, K. & K. Ko, 1995. Classification of native and cultivated Pyrus species in Korea by isozyme band patterns. J. Korean Soc. Horticult. Sci. 36: 829–835.Google Scholar
  8. Dae, I.K. & K.K. Chool, 1998. Taxonomy of oriental pear (Pyrus sp.) based on multivariate and RAPD analyses. Proceedings of XXV International Horticultural Congress (IHC), 2-7 August, Brussels. Abstract p. 447.Google Scholar
  9. Doyle, J.J. & J.L. Doyle, 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.Google Scholar
  10. Hartl, L. & S. Seefelder, 1997. Diversity of selected hop cultivars detected by fluorescent AFLPs. Theor. Appl. Genet. 96: 112–116.Google Scholar
  11. Kanayo, K., I. Kajiura & D.W. Mckenzie, 1982. The ideal Japanese pear. In: Van der Zwet, T. & F. Childers, (Eds), The Pear. Cultivars to Marketing. Bartlett Pear Harvest in a Northwest Orchard, pp. 138-147.Google Scholar
  12. Natividade, J.N., 1937. Cultura das pereiras. Ministério da Agricultura, Lisboa.Google Scholar
  13. Nei, M. & W.H. Li, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269–5273.Google Scholar
  14. Oliveira, C., M. Mota, L. Monte-Corvo, L. Goulão & D. Silva, 1999. Molecular typing of Pyrus based on RAPD markers. Scientia Horticulturae 79: 163–174.Google Scholar
  15. Rohlf, F.J., 1993. NTSYS-PC. Numerical taxonomy and multivariate analysis system. Version 1.8. Exeter Publications, Setauket, NY.Google Scholar
  16. Silva, A.V., 1996. El cultivo del peral en Portugal. Pera Rocha: una variedad 'rainha'. Fruticultura Profesional. Especial peral II. 78: 8–29.Google Scholar
  17. Tohme, J., D.O. Gonzalez, S. Beebe & M.C. Duque, 1996. AFLP analysis of gene pools of a wild bean core collection. Crops Sci. 36: 1375–1384.Google Scholar
  18. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407–4414.Google Scholar
  19. Ye, G.N., M. Hemmat, M.A. Lodhy, N.F. Weeden & B.I. Reisch, 1996. Primers longer than 16 bases are particularly useful for RAPD mapping and fingerprinting of grape and pear. BioTechniques 20: 368–371.Google Scholar
  20. Williams, J.G., A.R. Kubelik, K.J. Livak, J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531–6535.Google Scholar
  21. Zabeau, M. & P. Vos, 1993. Selective restriction fragment amplification: A general method for DNA fingerprinting. European Patent Application 92402629.7 (Publ no. 0-534-858-A1).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Luísa Monte-Corvo
    • 1
  • Luís Cabrita
    • 2
  • Cristina Oliveira
    • 1
  • José Leitão
    • 3
  1. 1.Instituto Superior de AgronomiaDPPA-Secção de HorticulturaLisboaPortugal
  2. 2.UCTA, Universidade do AlgarveFaroPortugal
  3. 3.UCTA, Universidade do AlgarveFaroPortugal

Personalised recommendations