Skip to main content
Log in

Variability for seed glucosinolates in a germplasm collection of the genus Brassica

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

A renewed interest in glucosinolates (GSLs) as compounds with biocidal and anticarcinogenic activity demands evaluation of the available variability in germplasm collections. The objective of the present study was to evaluate a germplasm collection of the genus Brassica for total content and profile of seed GSLs. A total of 1708 entries from 20 Brassica species were nondestructively analysed by near-infrared reflectance spectroscopy. The total GSL content and the concentrations of sinigrin, progoitrin, gluconapin, glucoerucin, glucoiberin, and 4-hydroxyglucobrassicin were estimated by means of previously developed calibration equations. One hundred and fifty entries, having either high GSL content or potentially interesting GSL profiles, were selected and further analysed by high-performance liquid chromatography. The collection contained great variability for GSL content and profile. Very high GSL contents (>200 μmol g-1) were measured in accessions of B. montana, B. nigra, and B. oleracea. The greatest intraspecific variability occurred in B. oleracea, where six contrasting GSL profiles were identified. The detected variability might be useful for the development of Brassica crops containing high GSL content and specific GSL profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, H., J.G. Vaughan & G.R. Fenwick, 1985. The limited chemotaxonomic value of glucosinolates for cultivar identification in Brassica napus L. var. oleifera (Metzg.). Z. Pflanzenzüchtg. 95: 97–105.

    Google Scholar 

  • Al-Shehbaz, I.A. & K.I. Al-Shammary, 1987. Distribution and chemotaxonomic significance of glucosinolates in certain middle-eastern Cruciferae. Biochem. Syst. Ecol. 15: 559–568.

    Google Scholar 

  • Daxenbichler, M.E., G.F. Spencer, D.G. Carlson, G.B. Rose, A.M. Brinker & R.G. Powell, 1991. Glucosinolate composition of seeds from 297 species of wild plants. Phytochemistry 30: 2623–2638.

    Google Scholar 

  • Faulkner, K., R. Mithen & G. Williamson, 1998. Selective increase of the potential anticarcinogen 4-methylsulphinylbutyl glucosinolate in broccoli. Carcinogenesis 19: 605–609.

    Google Scholar 

  • Getinet, A., G. Rakow & J.P. Raney, 1996. Glucosinolate content variation in Brassica carinata A. Braun germplasm grown at Holetta, Ethiopia. Eucarpia Cruciferae Newslett. 18: 84–85.

    Google Scholar 

  • Giamoustaris, A. & R. Mithen, 1995. The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann. Appl. Biol. 126: 347–363.

    Google Scholar 

  • Gladis, T., 1989. Die Gattung Brassica L. und die Reproduktion entomophiler Pflanzensippen in Genbanken. PhD Thesis, Zentralinstitut für Genetik und Kulturpflanzenforschung, Gatersleben, Germany.

    Google Scholar 

  • Gladis, T. & K. Hammer, 1990. Die Gaterslebener Brassica-Kollektion-eine Einführung. Kulturpflanze 38: 121–156.

    Google Scholar 

  • Gland, A., G. Röbbelen & W. Thies, 1981. Variation of alkenyl glucosinolates in seeds of Brassica species. Z. Pflanzenzüchtg. 87: 96–110.

    Google Scholar 

  • Horn, P.J. & J.G. Vaughan, 1983. Seed glucosinolates of fourteen wild Brassica species. Phytochemistry 22: 465–470.

    Google Scholar 

  • Josefsson, E., 1972. Variation of pattern and content of glucosinolates in seed of some cultivated Cruciferae. Z. Pflanzenzüchtg. 68: 113–123.

    Google Scholar 

  • Jürges, K., 1982. Möglichkeiten einer Auslese auf Glucosinolat-Armut in der Grünmasse von Brassica napus und B. campestris. Z. Pflanzenzüchtg. 89: 74–87.

    Google Scholar 

  • Kirkegaard, J.A. & M. Sarwar, 1998. Biofumigation potential of brassicas. I. Variation in glucosinolate profiles of diverse fieldgrown brassicas. Plant Soil 201: 71–89.

    Google Scholar 

  • Kirkegaard, J.A., M. Sarwar & J.N. Matthiessen, 1998. Assessing the biofumigation potential of crucifers. Acta. Hort. 459: 105–111.

    Google Scholar 

  • Kjaer, A., 1976. Glucosinolates in the Cruciferae. In: J.G. Vaughan, A.J. Macleod & B.M.G. Jones (Eds), The Biology and Chemistry of the Cruciferae, pp. 207–219.Academic Press, London.

    Google Scholar 

  • Lockwood, G.B. & A. Belkhiri, 1991. Glucosinolate spectrum of some Algerian Cruciferae. Plant Syst. Evol. 176: 11–20.

    Google Scholar 

  • Love, H.K., G. Rakow, J.P. Raney & R.K. Downey, 1990. Development of low glucosinolate mustard. Can. J. Plant Sci. 70: 419–424.

    Google Scholar 

  • Mithen, R., 1992. Leaf glucosinolate profiles and their relationship to pest and disease resistance in oilseed rape. Euphytica 63: 71–83.

    Google Scholar 

  • Mithen, R.F., B.G. Lewis, R.H. Heaney & G.R. Fenwick, 1987. Glucosinolates of wild and cultivated Brassica species. Phytochemistry 26: 1969–1973.

    Google Scholar 

  • Röbbelen, G. & W. Thies, 1980. Variation in rapeseed glucosinolates and breeding for improved meal quality. In: Tsunoda, S., K. Hinata & C. Gómez-Campo (Eds.), Brassica Crops and Wild Allies, pp. 285–299. Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  • Rosa, E.A.S., R.K. Heaney, G.R. Fenwick & C.A.M Portas, 1997. Glucosinolates in crop plants. Hort. Rev. 19: 99–215.

    Google Scholar 

  • Schilling, W. & W. Friedt, 1991. Breeding of 00-rapeseed (Brassica napus L.) with differential glucosinolate content in the leaves, pp. 250-255, Proc. 8th Int. Rapeseed Conf., Saskatoon, Canada.

  • Sørensen, H., 1990. Glucosinolates: structure, properties, function. In: F. Shahidi (Ed.), Canola and rapeseed. Production, chemistry, nutrition and processing technology, pp. 149–172, Van Nostrand Reinhold, New York, NY.

    Google Scholar 

  • Stoewsand, G.S., 1995. Bioactive organosulfur phytochemicals in Brassica oleracea vegetables. A review. Fd. Chem. Toxic. 33: 537–543.

    Google Scholar 

  • Vaughan, J.G. & E.I. Gordon, 1973. A taxonomic study of Brassica juncea using the techniques of electrophoresis, gas-liquid chromatography and serology. Ann. Bot. 37: 167–184.

    Google Scholar 

  • Velasco, L. & H.C. Becker, 1998. Analysis of total glucosinolate content and individual glucosinolates in Brassica spp. by nearinfrared reflectance spectroscopy. Plant Breed. 117: 97–102.

    Google Scholar 

  • Velasco, L. & C. Möllers, 1998. Nondestructive assessment of sinapic acid esters in Brassica species: II. Evaluation of germplasm and identification of phenotypes with reduced levels. Crop Sci. 38: 1650–1654.

    Google Scholar 

  • Velasco, L., J.M. Fernández-Martínez & A. De Haro, 1996. Identification of an Ethiopian mustard line with very high levels of glucosinolates. Eucarpia Cruciferae Newslett. 18: 96.

    Google Scholar 

  • Zhang, Y., P. Talalay, C.-G. Cho & G.H. Posner, 1992. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc. Natl. Acad. Sci. U.S.A., 89: 2399–2403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velasco, L., Becker, H.C. Variability for seed glucosinolates in a germplasm collection of the genus Brassica. Genetic Resources and Crop Evolution 47, 231–238 (2000). https://doi.org/10.1023/A:1008793623395

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008793623395

Navigation