Journal of Algebraic Combinatorics

, Volume 11, Issue 1, pp 49–68 | Cite as

Quasi-Shuffle Products

  • Michael E. Hoffman
Article

Abstract

Given a locally finite graded set A and a commutative, associative operation on A that adds degrees, we construct a commutative multiplication * on the set of noncommutative polynomials in A which we call a quasi-shuffle product; it can be viewed as a generalization of the shuffle product III. We extend this commutative algebra structure to a Hopf algebra (U, *, Δ); in the case where A is the set of positive integers and the operation on A is addition, this gives the Hopf algebra of quasi-symmetric functions. If rational coefficients are allowed, the quasi-shuffle product is in fact no more general than the shuffle product; we give an isomorphism exp of the shuffle Hopf algebra (U, III, Δ) onto (U, *, Δ) the set L of Lyndon words on A and their images { exp(w) ∣ w ∈ L} freely generate the algebra (U, *). We also consider the graded dual of (U, *, Δ). We define a deformation *q of * that coincides with * when q = 1 and is isomorphic to the concatenation product when q is not a root of unity. Finally, we discuss various examples, particularly the algebra of quasi-symmetric functions (dual to the noncommutative symmetric functions) and the algebra of Euler sums.

Hopf algebra shuffle algebra quasi-symmetric function noncommutative symmetric function quantum shuffle product 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.J. Broadhurst, J.M. Borwein, and D.M. Bradley, “Evaluation of irreducible k-fold Euler/Zagier sums: a compendium of results for arbitrary k,” Electron. J. Combin. 4(2) (1997), R5.Google Scholar
  2. 2.
    D.J. Broadhurst, “Massive 3-loop Feynman diagrams reducible to SC* primitives of algebras at the sixth root of unity,” Eur. Phys. & C. Part Fields 8 (1999), 311-333.Google Scholar
  3. 3.
    E.J. Ditters and A.C.J. Scholtens, “Note on free polynomial generators for the Hopf algebra QSym of quasisymmetric functions,” preprint.Google Scholar
  4. 4.
    G. Duchamp, A. Klyachko, D. Krob, and J.-Y. Thibon, “Noncommutative symmetric functions III: deformations of Cauchy and convolution algebras,” Disc. Math. Theor. Comput. Sci. 1 (1997), 159-216.Google Scholar
  5. 5.
    R. Ehrenborg, “On posets and Hopf algebras,” Adv. Math. 119 (1996), 1-25.Google Scholar
  6. 6.
    F. Fares, “Quelques constructions d'algèbres et de coalgèbres,” Thesis, Université du Québec à Montréal.Google Scholar
  7. 7.
    I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh, and J.-Y. Thibon, “Noncommutative symmetric functions,” Adv. Math. 112 (1995), 218-348.Google Scholar
  8. 8.
    I.M. Gessel, “Multipartite P-partitions and inner products of skew Schur functions,” Combinatorics and Algebra, 34, Contemp. Math., Amer. Math. Soc., Providence, 1984, pp. 289-301.Google Scholar
  9. 9.
    A.B. Goncharov, “Multiple polylogarithms, cyclotomy, and modular complexes,” Math. Res. Lett. 5 (1998), 497-516.Google Scholar
  10. 10.
    J.A. Green, “Quantum groups, Hall algebras and quantized shuffles,” in Finite Reductive Groups (Luminy, 1994), Progr. Math. 141, Birkhäuser Boston, 1997, pp. 273-290.Google Scholar
  11. 11.
    M. Hazewinkel, “The Leibniz-Hopf algebra and Lyndon words,” Centrum voor Wiskunde en Informatica Report AM-R9612, 1996.Google Scholar
  12. 12.
    M.E. Hoffman, “The algebra of multiple harmonic series,” J. Algebra 194 (1997), 477-495.Google Scholar
  13. 13.
    C. Malvenuto and C. Reutenauer, “Duality between quasi-symmetric functions and the Solomon descent algebra,” J. Algebra 177 (1995), 967-982.Google Scholar
  14. 14.
    C. Reutenauer, Free Lie Algebras, Oxford University Press, New York, 1993.Google Scholar
  15. 15.
    M. Rosso, “Groupes quantiques et algèbres de battage quantiques,” Comptes Rendus de 1' Acad. Sci. Paris Sér. I 320 (1995), 145-148.Google Scholar
  16. 16.
    A.C.J. Scholtens, “S-typical curves in noncommutative Hopf algebras,” Thesis, Vrije Universiteit, Amsterdam, 1996.Google Scholar
  17. 17.
    M. Sweedler, Hopf Algebras, Benjamin, New York, 1969.Google Scholar
  18. 18.
    J.-Y. Thibon and B.-C.-V. Ung, “Quantum quasi-symmetric functions and Hecke algebras,” J. Phys. A: Math. Gen. 29 (1996), 7337-7348.Google Scholar
  19. 19.
    A. Varchenko, “Bilinear form of real configuration of hyperplanes,” Adv. Math. 97 (1993), 110-144.Google Scholar
  20. 20.
    D. Zagier, “Values of zeta functions and their applications,” First European Congress of Mathematics, Paris, 1992, Vol. II, pp. 497-512, Birkhäuser Boston, Boston, 1994.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Michael E. Hoffman

There are no affiliations available

Personalised recommendations