Advertisement

Pharmacy World & Science

, Volume 22, Issue 3, pp 75–81 | Cite as

A review of the technical aspects of drug nebulization

  • P.P.H. Le Brun
  • A.H. de Boer
  • H.W. Frijlink
  • H.G.M. Heijerman
Article

Abstract

Nebulizers are widely used for the inhalation of drug solutions in a variety of respiratory diseases. The efficacy of nebulizer therapy is influenced by a great number of factors, including the design of the device and the characteristics of the drug solution. Incorrect cleaning, maintenance and disinfection procedures may change the nebulizer performance in time, whereas patient factors can influence the lung deposition of the generated aerosol. In this review the technical aspects of nebulization of drug solutions will be discussed. Two main parameters are generally used to evaluate the performance of nebulizers: the droplet size distribution of the aerosol and the drug output rate. The droplet size distribution and the drug output rate are basically determined by the design and user conditions of the nebulizer. A higher gas flow of the compressor in a jet nebulizer or a higher vibration frequency of the piezo electric crystal in an ultrasonic nebulizer, decreases the droplet size. The choice of the type of nebulizer for nebulization of a certain drug solution may initially be based on laboratory evaluation. The major part of the mass or volume distribution should preferably correspond with aerodynamic particle diameters in the range of 1 to 5 micrometer. The intended drug output must be realized within a reasonable nebulization time (less than 30 min). From the drug output only a minor fraction will be deposited in the lung. The relation between in vitro and in vivo deposition is only partly understood and to date it has not been possible to predict drug delivery only from in vitro studies on nebulizers. Therefore, studies in patients should be performed before a drug solution for nebulization can be recommended for clinical practice. The mechanical properties of nebulizers are likely to change during use. An average utilization time of nebulizers is not available. Therefore, the performance of nebulizers should be checked periodically. Patient compliance in nebulizer therapy is relatively low. This is partly due to the fact that, at present, drug solutions for nebulizers cannot be administered efficiently within a short period of time. More efficient systems should be developed. If possible, nebulizers should be substituted to more efficient systems, e.g. dry powder inhalers or metered dose inhalers.

Jet nebulizer Patient factors Performance Pulmonary drug delivery Technical considerations Ultrasonic nebulizer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Newman SP, Clarke SW. Therapeutic aerosols. 1. Physical and practical considerations. Thorax 1983;38:881-6.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Le Souëf. Meeting introduction. Eur Respir Rev 1997,7:375.Google Scholar
  3. 3.
    Mukhopadhyay S, Singh M, Cater JI, Ogston S, Franklin M, Olver RE. Nebulised antipseudomonal antibiotic therapy in cystic fibrosis: a meta-analysis of benefits and risks. Thorax 1996;51:364-8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Touw DJ, Brimicombe RW, Hodson ME, Heijerman HGM, Bakker W. Inhalation of antibiotics in cystic fibrosis. Eur Respir J 1995;8:1594-1604.PubMedGoogle Scholar
  5. 5.
    Deenstra M. De inhalatie als toedieningsvorm van geneesmiddelen. GeBu 1992,10:44-7.Google Scholar
  6. 6.
    Kendrick AH, Smith EC, Denyer J. Nebulizers-fill volume, residual volume and matching of nebulizers to compressor. Resp Med 1995;89:157-9.CrossRefGoogle Scholar
  7. 7.
    Pedersen S. Inhalers and nebulizers: which to choose and why. Resp Med 1996;90:69-77.CrossRefGoogle Scholar
  8. 8.
    Newman SP. In: Draco AB (Ed.), Nebulizer therapy: scientific and technical aspects. Lund, Sweden, 1989:1-38.Google Scholar
  9. 9.
    Loffert DT, Ikle D, Nelson HS. A comparison of commercial jet nebulizers. Chest 1994; 106; 1788-92.CrossRefPubMedGoogle Scholar
  10. 10.
    McCallion ONM, Taylor KMG, Bridges PA, Thomas M, Taylor AJ. Jet nebulizers for pulmonary delivery. Int J Pharm 1996;130:1-11.CrossRefGoogle Scholar
  11. 11.
    Kisch GL, Paloucek FP. Metered-dose inhalers and nebulizers in the acute setting. Ann Pharmacother 1992;26:92-5.CrossRefPubMedGoogle Scholar
  12. 12.
    De Boer AH, Bolhuis GK, Gjaltema D, Hagedoorn P. Inhalation chracteristics and their effects on in vitro drug delivery from dry powder inhalers. Part 3: the effect of flow increase rate (FIR) on the in vitro drug release from the Pulimicort 200 Turbuhaler. Int J Pharm 1997;153:67-77.CrossRefGoogle Scholar
  13. 13.
    Selroos O, Pietinalho A, Riska H. Delivery devices for inhaled asthma medication. Clin Immunother 1996;6:273-99.CrossRefGoogle Scholar
  14. 14.
    Newman SP, Pavia D. Aerosol deposition in man. In: Moren F, Newhouse MT, Dolovich MB, ed. Aerosols in medicine. Amsterdam Elsevier 1985 193-218.Google Scholar
  15. 15.
    Wolff RK, Niven RW. Generation of aerosolized drugs. J aerosol Med 1994; 7: 89-106.CrossRefPubMedGoogle Scholar
  16. 16.
    O'Callaghan C, Barry PW. The science of nebulised drug delivery. Thorax 1997, 52 (Suppl 2),S31-S44.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    British Thoracic society Nebuliser project Group. Thorax 1997;52 (suppl 2):S1.Google Scholar
  18. 18.
    Le souef P. The meaning of the lung dose. Allergy 1999; 54 (Suppl 49):93-6.CrossRefPubMedGoogle Scholar
  19. 19.
    Smith EC, Denyer J, Kendrick AH. Comparison of twenty three nebulizer/compressor combinations for domiciliary use. Eur Respir J 1995;7:1214-21.CrossRefGoogle Scholar
  20. 20.
    Le Brun PPH, de Boer AH, Gjaltema D, Hagedoorn P, Heijerman HGM, Frijlink HW. Inhalation of tobramycin in Cystic Fibrosis. Part 1: The choice of a nebulizer. Int J Pharm 1999;189:205-14.CrossRefPubMedGoogle Scholar
  21. 21.
    Geller DE. Choosing a nebulizer for cystic fibrosis applications. Curr Opin Pulm Med 1997;6:414-9.CrossRefGoogle Scholar
  22. 22.
    Mattews LW, Doershuk CF. Inhalation therapy and postural drainage for the treatment of cystic fibrosis. Mod Probl Pediatr 1967;10:297-314.Google Scholar
  23. 23.
    Newman SP, Pellow PGD, Clarke SW. Droplet size distribution of nebulised aerosols for inhalation therapy. Clin Phys Physiol Meas 1986;7:139-46.CrossRefPubMedGoogle Scholar
  24. 24.
    Mercer TT. Production of therapeutic aerosols: principles and techniques. Chest 1981;80 (suppl):813-8.PubMedGoogle Scholar
  25. 25.
    Sterk PJ, Plomp A, Van der Vate JF, Quanjer PH. Physical properties of aerosols produced by several jet and ultrasonic nebulizers. Bull Eur Physiolpathol Respir 1984;20:65-72.Google Scholar
  26. 26.
    Hinds WC. Aerosol technology. Properties, behavior and measurement of airborne particles. John Wiley & Sons, New York, 1982Google Scholar
  27. 27.
    Le Brun PPH, de Boer AH, Gjaltema D, Hagedoorn P, Heijerman HGM, Frijlink HW. Inhalation of tobramycin in Cystic Fibrosis. Part 2: Optimization of the tobramycin solution for a jet and an ultrasonic nebulizer. Int J Pharm 1999;189:215-25CrossRefPubMedGoogle Scholar
  28. 28.
    Nukiyama S, Tanasawa Y. Experiments on the atomisation of liquid by means of an air stream. Trans Soc Mech 1939;6:18-131.Google Scholar
  29. 29.
    Clay MM, Pavia D, Newman SP, Lennard-Jones T, Clarke SW. Assesment of jet nebulizers for lung aerosol therapy. Lancet 1983 (II):592-4.CrossRefGoogle Scholar
  30. 30.
    Lang RJ. Ultrasonic atomization of liquids. J Acoustics Soc Am 1962,34:6-8.CrossRefGoogle Scholar
  31. 31.
    Newman SP, Pellow PGD, Clarke SW. Dropsizes from medical atomisers for drug solutions with different viscosities and surface tensions. Atomization and Spray Technolog 1987;3:1-11.Google Scholar
  32. 32.
    McCallion ONM, Tayler KMG, Thomas M, Taylor AJ. Nebulisation of fluids of different physicochemical properties with air-jet and ultrasonic nebulizers. Pharm Research 1995;12:1682-8.CrossRefGoogle Scholar
  33. 33.
    Hinds WC, Macher JM, Firts MW. Size distribution of aerosols produced by the Laskin aerosol generator using substitute materials for DOP. Am Ind Hyg Ass J 1983; 44:495-500.CrossRefGoogle Scholar
  34. 34.
    Boucher RMG, Kreuter J. The fundamentals of the ultrasonic atomization of medicated solutions. Ann allergy 1968;26: 591-600.PubMedGoogle Scholar
  35. 35.
    McCallion ONM, Taylor KMG, Thomas M, Taylor AJ. Ultrasonic nebulisation of fluids with different viscosities and surface tensions. J Aerosol Med 1995;8:281-4.CrossRefGoogle Scholar
  36. 36.
    Newman SP, Pitcairn GR, Hooper G, Knoch M. Efficient drug delivery to the lungs from a continuously operated openvent nebulizer and low pressure compressor system. Eur Resp J 1994;7:1177-81.Google Scholar
  37. 37.
    Devadson SG, Everard ML, Linto JM, Le Souëf PN. Comparison of drug delivery from conventional versus "Venturi" nebulizers. Eur Resp J 1997;10:2479-83.CrossRefGoogle Scholar
  38. 38.
    Coates AL, MacNeish CF, Lands LC, Meisner D, Keleman S, Vadas EB. A comparison of the availability of tobramycin for inhalation from vented vs unvented nebulizers. Chest 1998;113:951-6.CrossRefPubMedGoogle Scholar
  39. 39.
    Newman SP, Pellow PGD, Clarke SW. Evaluation of jet nebulizers for use with gentamicin solutions. Thorax 1985;40:671-6.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Touw DJ, Jacobs FAH, Brimicombe RW, Heijerman HGM, Bakker W, Breimer DD. Pharmacokinetics of aerosolized tobramycin in adult patients with cystic fibrosis. Antimicrob Agents Chemother 1997;41:184-7.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Le Brun PPH, Vinks AATMM, Touw DJ, Hekelaar N, Mannes GPM, Brimicombe RW, Frijlink HW, Heijerman HGM. Can tobramycin inhalation be improved with a jet nebulizer; A pharmacokinetic analysis. Ther Drug Mon 1999;21:618-24.CrossRefGoogle Scholar
  42. 42.
    Schöni MH. Compliance der Inhalationstherapie bei Kindern mit respiratorischen erkrankungen. Schweiz Rundsch Med Prax 1993;82:1218-21.PubMedGoogle Scholar
  43. 43.
    Cochrane GM. Compliance with nebulized therapy. Eur Respir Rev 1997;7:51:383-4.Google Scholar
  44. 44.
    Le Brun PPH, Brimicombe RW, van Doorne H, Heijerman HGM. The cleaning and disinfection of nebulizers used at home and in a cystic fibrosis center. Eur Hosp Pharm 2000; accepted for publicationGoogle Scholar
  45. 45.
    Laube BL. Measurement of aerosol deposition in CF. Pediatric Pulmonol 1998 (suppl 17):181-2.Google Scholar
  46. 46.
    Chua HL, Coliis GG, Newburry AM, Chan K, Bower GD, Sly PD, Le Souef PN. The influence of age on aerososl deposition in infants with cystic fibrosis. Eur Respir J 1994;7:2185-91.CrossRefPubMedGoogle Scholar
  47. 47.
    Mallol J, Rattray S, Walker G, Cook D, Robertson CF. Aerosol deposition in children with cystic fibrosis. Pediatric Pulmonol 1996;21:276-81.CrossRefGoogle Scholar
  48. 48.
    Clark A. New aerosol delivery systems for cystic fibrosis. Ped Pulmonol 1998; suppl 17:183-4.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • P.P.H. Le Brun
    • 1
  • A.H. de Boer
    • 2
  • H.W. Frijlink
    • 2
  • H.G.M. Heijerman
    • 3
  1. 1.Central Hospital Pharmacy The HagueDen HaagThe Netherlands
  2. 2.Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenThe Netherlands
  3. 3.Adult Cystic Fibrosis Center, Department of PulmonologyLeyenburg HospitalDen HaagThe Netherlands

Personalised recommendations