Perspectives in Drug Discovery and Design

, Volume 20, Issue 1, pp 115–144 | Cite as

Predicting binding modes, binding affinities and `hot spots' for protein-ligand complexes using a knowledge-based scoring function

  • Holger Gohlke
  • Manfred Hendlich
  • Gerhard Klebe


The development of a new knowledge-based scoring function (DrugScore) and its power to recognize binding modes close to experiment, to predict binding affinities, and to identify ‘hot spots’ in binding pockets is presented. Structural information is extracted from crystallographically determined protein-ligand complexes using ReLiBase and converted into distance-dependent pair-preferences and solvent-accessible surface (SAS) dependent singlet preferences of protein and ligand atoms. The sum of the pair preferences and the singlet preferences is calculated using the 3D structure of protein-ligand complexes either taken directly from the X-raystructure or generated by the docking tool FlexX. DrugScore discriminates efficiently between well-docked ligand binding modes (root-mean-squaredeviation <2.0 Å with respect to a crystallographically determined reference complex) and computer-generated ones largely deviating from the native structure. For two test sets (91 and 68 protein-ligand complexes, taken from the PDB) the calculated score recognizes poses deviating <2 Å from the crystal structure on rank 1 in three quarters of all possible cases. Compared to the scoring function in FlexX, this is a substantial improvement. For five test sets ofcrystallographically determined protein-ligand complexes as well as for two sets of ligand geometries generated by FlexX, the calculated score is correlated with experimentally determined binding affinities. For a set of 16 crystallographically determined serine protease inhibitor complexes, a R2 value of 0.86 and a standard deviation of 0.95 log units is achievedas best result; for a set of 64 thrombin and trypsin inhibitors docked into their target proteins, aR2 value of 0.48 and a standard deviation of 0.7 log units is calculated. DrugScore performs better than other state-of-the-art scoring functions. To assess DrugScore's capability to reproduce the geometry of directional interactions correctly, ‘hotspots’ are identified and visualized in terms of isocontour surfaces inside the binding pocket. A dataset of 159 X-ray protein-ligand complexes is used to reproduce and highlight the actually observed ligand atom positions. In 74% of all cases, the actually observed atom type corresponds to an atom type predicted by the most favorable score at the nearest grid point. The prediction rate increases to 85% ifat least an atom type of the same class of interaction is suggested. DrugScore is fast to compute and includes implicitly solvation and entropy contributions. Small deviations in the 3D structureare tolerated and, since only contacts to non-hydrogenatoms are regarded, it does not require any assumptions on protonation states.

binding affinity docking knowledge-based protein-ligand interactions scoring function virtual screening 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Muller, K., Perspect. Drug Discov. Design, 3 (1995) v.CrossRefGoogle Scholar
  2. 2.
    Walters, W.P., Stahl, M.T. and Murcko, M.A., Drug Discov. Today, 3 (1998) 160.CrossRefGoogle Scholar
  3. 3.
    Van Drie, J.H. and Lajiness, M.S., Drug Discov. Today, 3 (1998) 274.CrossRefGoogle Scholar
  4. 4.
    Kubinyi, H., Curr. Opin. Drug Discov. Develop., 1 (1998) 4.Google Scholar
  5. 5.
    Lengauer, T. and Rarey, M., Curr. Opin. Struct. Biol., 6 (1996) 402.PubMedCrossRefGoogle Scholar
  6. 6.
    Kuntz, I.D., Meng, E.C. and Shoichet, B.K., Acc. Chem. Res., 27 (1994) 117.CrossRefGoogle Scholar
  7. 7.
    Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.PubMedCrossRefGoogle Scholar
  8. 8.
    Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.PubMedCrossRefGoogle Scholar
  9. 9.
    Jones, G., Willett, P., Glen, R.C., Leach, A.R. and Taylor, R., J. Mol. Biol., 267 (1997) 727.PubMedCrossRefGoogle Scholar
  10. 10.
    Dixon, J.S., Proteins, Suppl. 1, (1997) 198.PubMedCrossRefGoogle Scholar
  11. 11.
    Beveridge, D.L. and DiCapua, F.M., Annu. Rev. Biophys. Biophys. Chem., 18 (1989) 431.PubMedCrossRefGoogle Scholar
  12. 12.
    Kollman, P., Chem. Rev., 93 (1993) 2395.CrossRefGoogle Scholar
  13. 13.
    Kollman, P.A., Acc. Chem. Res., 29 (1996) 461.CrossRefGoogle Scholar
  14. 14.
    Dill, K.A., J. Biol. Chem., 272 (1997) 701.PubMedGoogle Scholar
  15. 15.
    Böhm, H.J., J. Comput.-Aided Mol. Design, 8 (1994) 243.CrossRefGoogle Scholar
  16. 16.
    Böhm, H.J., J. Comput.-Aided Mol. Design, 12 (1998) 309.CrossRefGoogle Scholar
  17. 17.
    Jain, A.N., J. Comput.-Aided Mol. Design, 10 (1996) 427.CrossRefGoogle Scholar
  18. 18.
    Murray, C.W., Auton, T.R. and Eldridge, M.D., J. Comput.-Aided Mol. Design, 12 (1998) 503.CrossRefGoogle Scholar
  19. 19.
    Rose, P. W., Scoring methods in ligand design, Proceedings of 2nd UCSF Course in Computer-Aided Molecular Design, San Francisco, CA, 1997.Google Scholar
  20. 20.
    Head, R.D., Smythe, M.L., Oprea, T.I., Waller, C.L., Green, S.M. and Marshall, G.R., J. Am. Chem. Soc., 118 (1996) 3959.CrossRefGoogle Scholar
  21. 21.
    Stahl, M. and Böhm, H.-J., J. Mol. Graph. Model, 16 (1998) 121.PubMedCrossRefGoogle Scholar
  22. 22.
    Vajda, S., Sippl, M. and Novotny, J., Curr. Opin. Struct. Biol., 7 (1997) 222.PubMedCrossRefGoogle Scholar
  23. 23.
    Jernigan, R.L. and Bahar, I., Curr. Opin. Struct. Biol., 6 (1996) 195.PubMedCrossRefGoogle Scholar
  24. 24.
    Torda, A.E., Curr. Opin. Struct. Biol., 7 (1997) 200.PubMedCrossRefGoogle Scholar
  25. 25.
    Mitchell, J.B.O., Laskowski, R.A., Alex, A., Forster, M.J. and Thornton, J.M., J. Comput. Chem., 20 (1999) 1177.CrossRefGoogle Scholar
  26. 26.
    Wallqvist, A. and Covell, D.G., Proteins, 25 (1996) 403.PubMedGoogle Scholar
  27. 27.
    Wallqvist, A., Jernigan, R.L. and Covell, D.G., Protein Sci., 4 (1995) 1881.PubMedGoogle Scholar
  28. 28.
    Verkhivker, K., Appelt, K., Freer, S.T. and Villafranca, J.E., Protein Eng., 8 (1995) 677.PubMedGoogle Scholar
  29. 29.
    Sharp, K.A., Nicholls, A., Friedman, R. and Honig, B., Biochemistry, 30 (1991) 9686.PubMedCrossRefGoogle Scholar
  30. 30.
    Pickett, S.D. and Sternberg, M.J., J. Mol. Biol., 231 (1993) 825.PubMedCrossRefGoogle Scholar
  31. 31.
    DeWitte, R.S. and Shaknovich, E.I., J. Am. Chem. Soc., 118 (1996) 11733.CrossRefGoogle Scholar
  32. 32.
    Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer Jr., E.E., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.PubMedGoogle Scholar
  33. 33.
    Muegge, I. and Martin, Y.C., J. Med. Chem., 42 (1999) 791.PubMedCrossRefGoogle Scholar
  34. 34.
    Muegge, I., Martin, Y.C., Hajduk, P.J. and Fesik, S.W., J. Med. Chem., 42 (1999) 2498.PubMedCrossRefGoogle Scholar
  35. 35.
    Mitchell, J.B.O., Laskowski, R.A., Alex, A. and Thornton, J.M., J. Comput. Chem., 20 (1999) 1165.CrossRefGoogle Scholar
  36. 36.
    Gohlke, H., Hendlich, K. and Klebe, G., J. Mol. Biol., 295 (2000) 337.PubMedCrossRefGoogle Scholar
  37. 37.
    Hendlich, M., Acta Crystallogr., D 54 (1998) 1178.Google Scholar
  38. 38.
    Verdonk, M.L., Cole, J.C. and Taylor, R., J. Mol. Biol., 289 (1999) 1093.PubMedCrossRefGoogle Scholar
  39. 39.
    Böhm, H.-J. and Klebe, G., Angew. Chem. Int. Ed. Engl., 35 (1996) 2566.CrossRefGoogle Scholar
  40. 40.
    Sippl, M.J., Curr. Opin. Struct. Biol., 5 (1995) 229.PubMedCrossRefGoogle Scholar
  41. 41.
    Sippl, M.J., J. Mol. Biol., 213 (1990) 859.PubMedGoogle Scholar
  42. 42.
    Sippl, M.J., J. Comput.-Aided Mol. Design, 7 (1993) 473.CrossRefGoogle Scholar
  43. 43.
    Godzik, A., Kolinski, A. and Skolnick, J., Protein Sci., 4 (1995) 2107.PubMedCrossRefGoogle Scholar
  44. 44.
    Miyazawa, S. and Jernigan, R.L., Proteins, 34 (1999) 49.PubMedCrossRefGoogle Scholar
  45. 45.
    Koehl, P. and Delarue, M., Proteins, 20 (1994) 264.PubMedCrossRefGoogle Scholar
  46. 46.
    Testa, B., Carrupt, P.A., Gaillard, P., Billois, F. and Weber, P., Pharm. Res., 13 (1996) 335.PubMedCrossRefGoogle Scholar
  47. 47.
    SYBYL, Tripos Inc., St. Louis, MO.Google Scholar
  48. 48.
    Davis, A.M. and Teague, S.J., Angew. Chem. Int. Ed. Engl., 38 (1999) 736.CrossRefGoogle Scholar
  49. 49.
    Burley, S.K. and Petsko, G.A., Science, 229 (1985) 23.PubMedGoogle Scholar
  50. 50.
    Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V. and Mee, R.P., J. Comput.-Aided Mol. Design, 11 (1997) 425.CrossRefGoogle Scholar
  51. 51.
    Hosur, M.V., Bhat, T.N., Kempf, D.J., Baldwin, E.T., Liu, B., Gulnik, S., Wideburg, N.E., Norbeck, D.W., Appelt, K. and Erickson, J.W., J. Am. Chem. Soc., 116 (1994) 847.CrossRefGoogle Scholar
  52. 52.
    Kramer, B., Rarey, M. and Lengauer, T., Proteins, 37 (1999) 145.CrossRefGoogle Scholar
  53. 53.
    Quiocho, F.A., Wilson, D.K. and Vyas, N.K., Nature, 340 (1989) 404.PubMedCrossRefGoogle Scholar
  54. 54.
    Obst, U., De novo-Design und Synthese neuartiger, nichtpeptidischer Thrombin-Inhibitoren, Ph.D. Thesis, ETH Zürich, Zürich, 1997.Google Scholar
  55. 55.
    Obst, U., Banner, D.W., Weber, L. and Diederich, F., Chem. Biol., 4 (1997) 287.PubMedCrossRefGoogle Scholar
  56. 56.
    De Priest, S.A., Mayer, D., Naylor, C.B. and Marshall, G.R., J. Am. Chem. Soc., 115 (1993) 5372.Google Scholar
  57. 57.
    Bruno, I.J., Cole, J.C., Lommerse, J.P., Rowland, R.S., Taylor, R. and Verdonk, M.L., J. Comput.-Aided Mol. Design, 11 (1997) 525.CrossRefGoogle Scholar
  58. 58.
    Bartlett, P.A. and Marlowe, C.K., Science, 235 (1987) 569.PubMedGoogle Scholar
  59. 59.
    Grobelny, D., Goli, U.B. and Galardy, R.E., Biochemistry, 28 (1989) 4948.PubMedCrossRefGoogle Scholar
  60. 60.
    Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S. and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.CrossRefGoogle Scholar
  61. 61.
    Allen, F.H., Davies, J.E., Galloy, J.J., Johnson, O., Kennard, O., Macrae, C.F., Mitchell, E.M., Mitchell, G.F., Smith, J.M. and Watson, D.G., J. Chem. Inf. Comput. Sci., 31 (1991) 187.CrossRefGoogle Scholar
  62. 62.
    Hofmann, D.W.M. and Lengauer, T., J. Mol. Model, 4 (1998) 132.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Holger Gohlke
    • 1
  • Manfred Hendlich
    • 1
  • Gerhard Klebe
    • 1
  1. 1.Department of Pharmaceutical ChemistryPhilipps-University of MarburgMarburgGermany

Personalised recommendations