Perspectives in Drug Discovery and Design

, Volume 19, Issue 1, pp 157–177 | Cite as

Lipophilicity in trans-bilayer transport and subcellular pharmacokinetics

  • Štefan Baláž
Article

Abstract

The aim of subcellular pharmacokinetics in drug design is to model drug disposition and response as a function of the properties of drugs and biosystems involved and the observation time. Biosystems are represented by systems of alternating membranes and aqueous phases that differ in acidity and contain low-molecular cell constituents, enzymes and other proteins. The resulting disposition models are combined with linear free-energy assumptions, drug/receptor binding kinetics and relationships between receptor binding and response to produce model-based quantitativestructure–(time–)activity relationships, QS(T)AR. This review summarizes the present status of subcellular pharmacokinetics with emphasis on passive trans-bilayer transport. In particular, mechanisms of transport are analyzed with respect to amphiphilicity and lipophilicity. The overall rate of transport is strongly governed by amphiphilicity, the tendency of drug molecules to adsorb to the bilayer/water interface. Depending on amphiphilicity, the time needed for a drug to cross a single bilayer ranges from seconds to days. The main advantage of the subcellular pharmacokinetic approach is that the resulting models, once calibrated for a given biosystem, provide a detailed recipe for tailoring the drug properties to ensure optimum disposition.

absorption amphiphilicity bilayer/water interface core disposition distribution elimination phospholipids QSTAR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prentis, R.A., Lis, Y. and Walker, S.R., Br. J. Clin. Pharmacol., 25 (1988) 387.PubMedGoogle Scholar
  2. 2.
    Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J., Adv. Drug Deliv. Rev., 23 (1997) 3.CrossRefGoogle Scholar
  3. 3.
    Kansy, M., Senner, F. and Gubernator, K., J. Med. Chem., 41 (1998) 1007.PubMedCrossRefGoogle Scholar
  4. 4.
    Ajay, A., Walters, W.P. and Murcko, M.A., J. Med. Chem., 41 (1998) 3314.PubMedCrossRefGoogle Scholar
  5. 5.
    Rowland, M. and Tozer, T.N., Clinical Pharmacokinetics. Concepts and Applications, 3rd ed., Williams & Wilkins, Media, PA, 1995.Google Scholar
  6. 6.
    Blakey, G.E., Nestorov, I.A., Arundel, P.A., Aarons, L.J. and Rowland, M., J. Pharmacokinet. Biopharm., 25 (1997) 277.PubMedCrossRefGoogle Scholar
  7. 7.
    Chou, C.H., Aarons, L. and Rowland, M., J. Pharmacokinet. Biopharm., 26 (1998) 595.PubMedGoogle Scholar
  8. 8.
    Penniston, J.T., Beckett, L., Bentley, D.L. and Hansch, C., Mol. Pharmacol., 5 (1969) 333.PubMedGoogle Scholar
  9. 9.
    Ueda, K., Taguchi, Y. and Morishima, M., Semin. Cancer Biol., 8 (1997) 151.PubMedCrossRefGoogle Scholar
  10. 10.
    Leo, A. and Weininger, D., Biobyte Corp., Claremont, CA, 1995.Google Scholar
  11. 11.
    Yoshino, A., Yoshida, T., Okabayashi, H., Kamaya, H. and Ueda, I., J. Colloid Interface Sci., 198 (1998) 319.CrossRefGoogle Scholar
  12. 12.
    Hansch, C. and Fujita, T., J. Am. Chem. Soc., 86 (1964) 1616.CrossRefGoogle Scholar
  13. 13.
    Moring, J., Niego, L.A., Ganley, L.M., Trumbore, M.W. and Herbette, L.G., Biophys. J., 67 (1994) 2376.PubMedGoogle Scholar
  14. 14.
    Eisenberg, D., Weiss, R.M. and Terwilliger, T.C., Nature, 299 (1982) 371.PubMedCrossRefGoogle Scholar
  15. 15.
    Brasseur, R., Vandenbosch, C., Van den Bossche, H. and Ruysschaert, J.M., Biochem. Pharmacol., 32 (1983) 2175.PubMedCrossRefGoogle Scholar
  16. 16.
    Balaz, S., Wiese, M. and Seydel, J.K., J. Pharm. Sci., 81 (1992) 849.PubMedGoogle Scholar
  17. 17.
    Kamp, F. and Hamilton, J.A., Proc. Natl. Acad. Sci. USA, 89 (1992) 11367.PubMedCrossRefGoogle Scholar
  18. 18.
    Classen, J., Deuticke, B. and Haest, C.W., J. Membr. Biol., 111 (1989) 169.PubMedCrossRefGoogle Scholar
  19. 19.
    Chowhan, Z.T., Yotsuyanagi, T. and Higuchi, W.I., Biochim. Biophys. Acta, 266 (1972) 320.PubMedCrossRefGoogle Scholar
  20. 20.
    Serra, M.V., Kamp, D. and Haest, C.W., Biochim. Biophys. Acta, 1282 (1996) 263.PubMedCrossRefGoogle Scholar
  21. 21.
    Kedem, O. and Katchalsky, A., Biochim. Biophys. Acta, 27 (1958) 229.PubMedCrossRefGoogle Scholar
  22. 22.
    Subczynski, W.K., Hyde, J.S. and Kusumi, A., Proc. Natl. Acad. Sci. USA, 86 (1989) 4474.PubMedCrossRefGoogle Scholar
  23. 23.
    Cabrini, G. and Verkman, A.S., Biochim. Biophys. Acta, 862 (1986) 285.PubMedCrossRefGoogle Scholar
  24. 24.
    Marx, U., Lassmann, G., Wimalasena, K., Muller, P. and Herrmann, A., Biophys. J., 73 (1997) 1645.PubMedGoogle Scholar
  25. 25.
    Kuzelova, K. and Brault, D., Biochemistry, 33 (1994) 9447.PubMedCrossRefGoogle Scholar
  26. 26.
    Regev, R. and Eytan, G.D., Biochem. Pharmacol., 54 (1997) 1151.PubMedCrossRefGoogle Scholar
  27. 27.
    Pebay, P.E., Dufourc, E.J. and Szabo, A.G., Biophys. Chem., 53 (1994) 45.CrossRefGoogle Scholar
  28. 28.
    Wenk, M.R., Alt, T., Seelig, A. and Seelig, J., Biophys. J., 72 (1997) 1719.PubMedGoogle Scholar
  29. 29.
    Marrink, S.J., Jahnig, F. and Berendsen, H.J., Biophys. J., 71 (1996) 632.PubMedCrossRefGoogle Scholar
  30. 30.
    Wilson, M.A. and Pohorille, A., J. Am. Chem. Soc., 118 (1996) 6580.PubMedCrossRefGoogle Scholar
  31. 31.
    Marrink, S.J. and Berendsen, H.J.C., J. Phys. Chem., 100 (1996) 16729.CrossRefGoogle Scholar
  32. 32.
    Bassolino, D., Alper, H. and Stouch, T.R., Drug Des. Discov., 13 (1996) 135.PubMedGoogle Scholar
  33. 33.
    Pidgeon, C., Ong, S.W., Liu, H.L., Qiu, X.X., Pidgeon, M., Dantzig, A.H., Munroe, J., Hornback, W.J., Kasher, J.S., Glunz, L. and Sczerba, T., J. Med. Chem., 38 (1995) 590.PubMedCrossRefGoogle Scholar
  34. 34.
    Yang, C.Y., Cai, S.J., Liu, H.L. and Pidgeon, C., Adv. Drug Deliv. Rev., 23 (1997) 229.CrossRefGoogle Scholar
  35. 35.
    Van de Waterbeemd, H. and Kansy, M., Chimia, 46 (1992) 299.Google Scholar
  36. 36.
    Chikhale, E.G., Ng, K.Y., Burton, P.S. and Borchardt, R.T., Pharm. Res., 11 (1994) 412.PubMedCrossRefGoogle Scholar
  37. 37.
    Leahy, D.E., Taylor, P.J. and Wait, A.R., Quant. Struct.—Act. Relat., 8 (1989) 17.Google Scholar
  38. 38.
    Xiang, T.X. and Anderson, B.D., J. Membr. Biol., 140 (1994) 111.PubMedGoogle Scholar
  39. 39.
    Balaz, S. and Sturdik, E., In Tichy, M. (Ed.) QSAR in Toxicology and Xenobiochemistry, Elsevier, Amsterdam, 1985, pp. 257–267.Google Scholar
  40. 40.
    Kubinyi, H., J. Pharm. Sci., 67 (1978) 262.PubMedGoogle Scholar
  41. 41.
    Van de Waterbeemd, H., van Bakel, H. and Jansen, A., J. Pharm. Sci., 70 (1981) 1081.PubMedGoogle Scholar
  42. 42.
    Kubinyi, H., J. Med. Chem., 20 (1977) 625.PubMedCrossRefGoogle Scholar
  43. 43.
    Balaz, S., Sturdik, E., Hrmova, M., Breza, M. and Liptaj, T., Eur. J. Med. Chem., 19 (1984) 167.Google Scholar
  44. 44.
    Dearden, J.C., Environ. Health Perspect., 61 (1985) 203.PubMedGoogle Scholar
  45. 45.
    Flynn, G.L. and Yalkowsky, S.H., J. Pharm. Sci., 61 (1972) 838.PubMedGoogle Scholar
  46. 46.
    Balaz, S., Sturdik, E., Dibus, I., Ebringer, L., Stibranyi, L. and Rosenberg, M., Chem.-Biol. Interact., 55 (1985) 93.PubMedGoogle Scholar
  47. 47.
    Collander, R., Acta Chem. Scand., 5 (1951) 774.CrossRefGoogle Scholar
  48. 48.
    Balaz, S., Quant. Struct.—Act. Relat., 13 (1994) 381.Google Scholar
  49. 49.
    Balaz, S. and Sturdik, E., Gen. Physiol. Biophys., 4 (1985) 105.PubMedGoogle Scholar
  50. 50.
    Dvorsky, R., Balaz, S. and Sawchuk, R.J., J. Theor. Biol., 185 (1997) 213.PubMedCrossRefGoogle Scholar
  51. 51.
    Balaz, S., Sturdik, E. and Augustin, J., Biophys. Chem., 24 (1986) 135.PubMedCrossRefGoogle Scholar
  52. 52.
    Balaz, S., SAR QSAR Environ. Sci., 4 (1995) 177.Google Scholar
  53. 53.
    Balaz, S., Sturdik, E. and Augustin, J., Bull. Math. Biol., 50 (1988) 367.PubMedCrossRefGoogle Scholar
  54. 54.
    Higuchi, T. and Davis, S.S., J. Pharm. Sci., 59 (1970) 1376.PubMedGoogle Scholar
  55. 55.
    Hyde, R.M., J. Med. Chem., 18 (1975) 231.PubMedCrossRefGoogle Scholar
  56. 56.
    Martin, Y.C. and Hackbarth, J.J., J. Med. Chem., 19 (1976) 1033.PubMedCrossRefGoogle Scholar
  57. 57.
    Martin, Y.C., In Franke, R. and Oehme, P. (Eds.) Quantitative Structure—Activity Analysis, Akademie-Verlag, Berlin, 1978, pp. 351–358.Google Scholar
  58. 58.
    Martin, Y.C., Quantitative Drug Design. A Critical Introduction, Marcel Dekker, New York, NY, 1978.Google Scholar
  59. 59.
    Martin, Y.C., In Yalkowsky, S.H., Sinkula, A.A. and Valvani, S.C. (Eds.) Physical Chemical Properties of Drugs, Marcel Dekker, New York, NY, 1980, pp. 49–110.Google Scholar
  60. 60.
    Martin, Y.C., In Martin, Y.C., Kutter, E. and Austel, V. (Eds.) Modern Drug Research. Paths to Better and Safer Drugs, Marcel Dekker, New York, NY, 1989, pp. 161–216.Google Scholar
  61. 61.
    Pirselova, K. and Balaz, S., Chemometr. Intell. Lab. Syst., 24 (1994) 193.CrossRefGoogle Scholar
  62. 62.
    Balaz, S., Sturdik, E. and Tichy, M., Quant. Struct.—Act. Relat., 4 (1985) 77.Google Scholar
  63. 63.
    Balaz, S., Wiese, M., Chi, H.L. and Seydel, J.K., Anal. Chim. Acta, 235 (1990) 195.CrossRefGoogle Scholar
  64. 64.
    Watanabe, J. and Kozaki, A., Chem. Pharm. Bull., 26 (1978) 665.PubMedGoogle Scholar
  65. 65.
    Balaz, S., Pirselova, K., Schultz, T.W. and Hermens, J., J. Theor. Biol., 178 (1996) 7.CrossRefGoogle Scholar
  66. 66.
    Pirselova, K., Balaz, S. and Schultz, T.W., Arch. Environ. Contam. Toxicol., 30 (1996) 170.PubMedCrossRefGoogle Scholar
  67. 67.
    Balaz, S., Cronin, M.T.D. and Dearden, J.C., Pharm. Sci. Commun., 4 (1993) 51.Google Scholar
  68. 68.
    Pirselova, K., Balaz, S., Sturdik, E., Ujhelyova, R., Veverka, M., Uher, M. and Brtko, J., Quant. Struct.—Act. Relat., 16 (1997) 283.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Štefan Baláž
    • 1
  1. 1.College of Pharmacy, Department of Pharmaceutical SciencesNorth Dakota State UniversityFargoU.S.A.

Personalised recommendations