Journal of Sol-Gel Science and Technology

, Volume 18, Issue 2, pp 159–166 | Cite as

Characteristics of Sol-Gel SnO2 Films Treated by Ammonia

  • Zhengtian Gu
  • Peihui Liang
  • Xiaolin Liu
  • Weiqing Zhang
  • Yueqin Le


Tin dioxide thin films prepared by sol-gel dip-coating method with ammonia treatment have been studied. By using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, detailed investigation on the structure and morphology of the films has shown the condensation of Sn-OH and the strengthening of gel network net through ammonia treatment, which leads to the improvement of the adhesion of the films. From the spectral transmission, angular distribution of reflectance and absorption spectrum, the optical properties of the ammonia treated films indicate that the ammonia treated films have a favorable optical performance, and the films are more suitable for acting as antireflective films than the heat-treated films. The ammonia treated films also exhibit higher conductivity compared with the non-treated films.

tin dioxide dip-coating ammonia treatment optical property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.L. Chopra, S. Major, and D.K. Pandya, Thin Solid Films 102, 1 (1983).Google Scholar
  2. 2.
    Y.K. Fang and J.J. Lee, Thin Solid Films 169, 51 (1989).Google Scholar
  3. 3.
    A. Messad, J. Bruneaux, H. Cachet, and M. Froment, J. Mater. Sci. 29, 5095 (1994).Google Scholar
  4. 4.
    T. Maruyama and K. Tabata, J. Appl. Phys. 68, 4282 (1990).Google Scholar
  5. 5.
    A. Smith, J.M. Laurent, D.S. Smith, J.P. Bonnet, and R.R. Clemente, Thin Solid Films 252, 20 (1995).Google Scholar
  6. 6.
    T.D. Senguttuvan and L.K. Malhotra, J. Phys. Chem. Solids 58, 19 (1997).Google Scholar
  7. 7.
    T.M. Racheva and G.W. Critchlow, Thin Solid Films 292, 299 (1997).Google Scholar
  8. 8.
    Sung-Soon Park and J.D. Mackenzie, Thin Solid Films 258, 268 (1995).Google Scholar
  9. 9.
    C. Agashe and S.S. Major, J. Mater. Sci. Lett. 15, 497 (1996).Google Scholar
  10. 10.
    A. Maddalena, R.D. Maschio, S. Dire, and A. Raccanelli, J. Non-Crystalline Solids 121, 365 (1990).Google Scholar
  11. 11.
    E. Shanthi, V. Dutta, A. Banerjee, and K.I. Chopra, J. Appl. Phys. 51, 6243 (1980).Google Scholar
  12. 12.
    J.C. Manifacier, M. De Murcia, and J.P. Fillard, Thin Solid Films 41, 127 (1997).Google Scholar
  13. 13.
    J.P. Chatelon, C. Terrier, E. Bernstein, R. Berjoan, and J.A. Roger, Thin Solid Films 247, 162 (1994).Google Scholar
  14. 14.
    J.M. Laurent, A. Smith, D.S. Smith, J.P. Bonnet, and R.R. Clemente, Thin Solid Films 292, 145 (1997).Google Scholar
  15. 15.
    X.L. Liu and P.H. Liang, Appl. Opt. 36(16), 3788 (1997).Google Scholar
  16. 16.
    X.L. Liu, P.H. Liang, W.Q. Zhang, and Y.X. Tang, Opt. & Laser Tech 30, 85 (1998)R.Google Scholar
  17. 17.
    K. Iler, The Chemistry of Silica (Wiley, New York, 1979).Google Scholar
  18. 18.
    J.F. Chatelon, C. Terrier, and J.A. Roger, J. Sol-Gel Sci. and Tech. 10, 55 (1997).Google Scholar
  19. 19.
    J. Melsheimer and D. Ziegler, Thin Solid Films 129, 35 (1985).Google Scholar
  20. 20.
    C. Terrier, J.P. Chatelon, and J.A. Roger, Thin Solid Films 295, 95 (1997).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Zhengtian Gu
    • 1
  • Peihui Liang
    • 1
  • Xiaolin Liu
    • 1
  • Weiqing Zhang
    • 1
  • Yueqin Le
    • 1
  1. 1.Shanghai Institute of Optics and Fine MechanicsThe Chinese Academy of SciencesShanghaiP.R. China

Personalised recommendations