Journal of Sol-Gel Science and Technology

, Volume 14, Issue 1, pp 7–25

Silicon Oxycarbide Glasses

  • Carlo G. Pantano
  • Anant K. Singh
  • Hanxi Zhang
Article

DOI: 10.1023/A:1008765829012

Cite this article as:
Pantano, C.G., Singh, A.K. & Zhang, H. Journal of Sol-Gel Science and Technology (1999) 14: 7. doi:10.1023/A:1008765829012

Abstract

The first attempts to introduce carbon into glass date back to 1951. But up until recently, the use of carbon or carbide raw materials, and the oxidation, volatilization and decomposition that accompany high temperature melting, have limited the synthesis of true silicon oxycarbide glasses. Here, the term silicon-oxycarbide refers specifically to a carbon-containing silicate glass wherein oxygen and carbon atoms share bonds with silicon in the amorphous, network structure. Thus, there is a distinction between black glass, which contains only a second-phase dispersion of elemental carbon, and oxycarbide glasses which usually contain both network carbon and elemental carbon. In addition to exploring the unique properties and applications of these glasses, per se, they are also of interest for developing models of the residual amorphous phases in polymer-derived silicon-carbide and silicon-nitride ceramics.

The application of sol/gel techniques to glass synthesis has significantly advanced the development and characterization of silicon oxycarbide glasses. In this approach, alkyl-substituted silicon alkoxides, which are molecular precursors containing oxygen and carbon functionalities on the silicon, can be hydrolyzed and condensed without decomposition or loss of the carbon functional group. A low-temperature (<1000°C) heat-treatment of the gel creates a glassy silicate material whose molecular structure consists of an oxygen/carbon anionic network. In addition, there is always a blackening of the material due to elemental carbon, which forms during pyrolysis and densification of the gel. The nature of the network carbon, and especially the distribution and form of the elemental carbon, are fundamental to the structure and properties of these novel materials. Their chemical and physical characteristics as revealed by NMR, Raman and TEM are discussed in the overview. In addition, the high temperature stability of these glasses (up to 1750°C), and the effect of hot-pressing, are described.

It will be shown that the silicon oxycarbide network is stable up to 1000–1200°C. The network carbon is terminated with hydrogen (i.e., CH, =CH2 and –CH3), and with polyaromatic carbon (i.e., nC6Hx) wherein most of the elemental carbon resides. These glasses can be described as molecular composites of polyaromatic graphene-rings dispersed in a silicon oxycarbide network. After heating to temperatures in excess of 1000–1200°C, the oxycarbide network decomposes through the loss of hydrogen, and a two- or three-phase glass-ceramic consisting of nanocrystalline graphite, silicon carbide, and amorphous silica or cristobalite, is created. Some of the properties and applications of these glasses/glass-ceramics for coatings, composites and porous solids are summarized.

black glass silicon oxycarbide Nicalon NMR Raman TEM high temperature stability surface chemistry network carbon elemental carbon structure free carbon FTIR nanocomposite silicon carbide 

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Carlo G. Pantano
    • 1
  • Anant K. Singh
    • 1
  • Hanxi Zhang
    • 1
  1. 1.Department of Materials Science and EngineeringPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations