Perspectives in Drug Discovery and Design

, Volume 18, Issue 1, pp 113–135 | Cite as

Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding

  • Irina Massova
  • Peter A. Kollman
Article

Abstract

Significant progress has been achieved in computational methods to treat solvent effects in recent years. Among various techniques, the continuum solvent approach appears to be practically promising because it can be used to calculate reliable interaction and solvation energies in complex systems. A computational scanning mutagenesis method, one of such new approaches, has been recently developed. It combines the molecular mechanical and continuum solvent approaches and allows one to identify the `hotspots' in binding interfaces from a single trajectory of a wild type complex. Such techniques can be also used as a tool to optimize the interacting species for the binding, or as a ranking procedure in high throughput screening.

continuum approaches GBSA MM PBSA simulation methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kollman, P.A., Chem. Rev., 93 (1993) 2395.CrossRefGoogle Scholar
  2. 2.
    Smith, P. E. and Pettitt, B.M., J. Phys. Chem., 98 (1994) 9700.CrossRefGoogle Scholar
  3. 3.
    Van Gunsteren, W.F., Luque, F.J., Timms, D. and Torda, A.E., Annu. Rev. Biophys. Biomol. Struct., 23 (1994) 847.PubMedCrossRefGoogle Scholar
  4. 4.
    Tomasi, J. and Persico, M., Chem. Rev., 94 (1994) 2027.CrossRefGoogle Scholar
  5. 5.
    Leach, A.R., Molecular Modelling: Principles and Applications, Addison Wesley Longman Ltd, Singapore, 1996, pp. 503–520.Google Scholar
  6. 6.
    Gao, J., Acc. Chem. Res., 29 (1996) 298.CrossRefGoogle Scholar
  7. 7.
    Levy, R.M. and Gaillicchio, E., Annu. Rev. Phys. Chem., 49 (1998) 531.PubMedCrossRefGoogle Scholar
  8. 8.
    Eisenberg, D. and McLachlan, A.D., Nature, 319 (1986) 199.PubMedCrossRefGoogle Scholar
  9. 9.
    Born, M.Z., Phys., 1 (1920) 45.Google Scholar
  10. 10.
    Kirkwood, J.G., J. Chem. Phys., 2 (1934) 351.CrossRefGoogle Scholar
  11. 11.
    Onsager, L., J. Am. Chem. Soc., 58 (1936) 1486.CrossRefGoogle Scholar
  12. 12.
    Debye, P. and Hückel, E., Physik. Z., 24 (1923) 185.Google Scholar
  13. 13.
    Tanford, C. and Kirkwood, J.G., J. Am. Chem. Soc., 79 (1957) 5333.CrossRefGoogle Scholar
  14. 14.
    Warwicker, J. and Watson, H.C., J. Mol. Biol., 157 (1982) 671.PubMedCrossRefGoogle Scholar
  15. 15.
    Klapper, I., Hagstrom, R., Fine, R., Sharp, K. and Honig, B., Proteins, 1 (1986) 47.PubMedCrossRefGoogle Scholar
  16. 16.
    Nicholls, A. and Honig, B., J. Comput. Chem., 12 (1990) 435.CrossRefGoogle Scholar
  17. 17.
    Honig, B. and Nicholls, A., Science, 268 (1995) 1144.PubMedGoogle Scholar
  18. 18.
    Chen, J.L., Noodelman, L., Case, D.A. and Bashford, D., J. Phys. Chem., 98 (1994) 11059.CrossRefGoogle Scholar
  19. 19.
    Madura, J.D., Briggs, J.M., Wade, R.C., Davis, M.E., Luty, B.A., Ilin, A., Antosiewicz, J., Gilson, M.K., Bagheri, B., Scott, L.R. and McCammon, J.A., Comput. Phys. Commun., 91 (1995) 57.CrossRefGoogle Scholar
  20. 20.
    Sitkoff, D., Sharp, K.A. and Honig, B., J. Phys. Chem., 98 (1994) 1978.CrossRefGoogle Scholar
  21. 21.
    Weiser, J., Shenkin, P.S. and Still, W.C., J. Comput. Chem., 20 (1999) 688.CrossRefGoogle Scholar
  22. 22.
    You, T.J. and Bashford, D., Biophys. J., 65 (1995) 1721.CrossRefGoogle Scholar
  23. 23.
    Wlodek, S.T., Antosiewicz, J. and McCammon. J.A., Protein Sci., 6 (1997) 373.PubMedCrossRefGoogle Scholar
  24. 24.
    Beroza, P. and Case, D., J. Phys. Chem., 100 (1996) 20156.CrossRefGoogle Scholar
  25. 25.
    Holst, M., Kozack, R.E., Saied, F. and Subramaniam, S., Proteins Struct. Funct. Genet., 18 (1994) 231.PubMedCrossRefGoogle Scholar
  26. 26.
    Sharp, K.A., J. Comput. Chem., 12 (1991) 454.CrossRefGoogle Scholar
  27. 27.
    Constanciel, R. and Contreras, R., Theor. Chim. Acta, 65 (1986) 1.CrossRefGoogle Scholar
  28. 28.
    Still, W.C., Tempczyrk, A., Hawley, R.C. and Hendrickson, T., J. Am. Chem. Soc., 112 (1990) 6127.CrossRefGoogle Scholar
  29. 29.
    Cramer, C.J. and Truhlar, D.G., J. Comput.-Aided Mol. Design, 6 (1992) 629.CrossRefGoogle Scholar
  30. 30.
    Zhu, T.H., Li, J.B., Liotard, D.A., Cramer, C.J. and Truhlar, D.G., J. Chem. Phys., 110 (1999) 5503.CrossRefGoogle Scholar
  31. 31.
    Zou, X., Sun, Y. and Kuntz, I.D., J. Am. Chem. Soc., 121 (1999) 8033.CrossRefGoogle Scholar
  32. 32.
    Wong, M.W., Frisch, M.J. and Wiberg, K.B., J. Am. Chem. Soc., 113 (1991) 4776.CrossRefGoogle Scholar
  33. 33.
    Rivail, J.L. and Rinaldi, D., Chem. Phys., 18 (1976) 233.CrossRefGoogle Scholar
  34. 34.
    Miertuš, S. and Tomasi, J., Chem. Phys., 65 (1982) 329.Google Scholar
  35. 35.
    Klamt, A. and Schüürmann, G., J. Chem. Soc. Perkin Trans. II, 5 (1993) 799.CrossRefGoogle Scholar
  36. 36.
    Gogonea, V. and Merz, K.M., J. Phys. Chem., A103 (1999) 5171.Google Scholar
  37. 37.
    Russell, S.T. and Warshel, A., J. Mol. Biol., 185 (1985) 389.PubMedCrossRefGoogle Scholar
  38. 38.
    For example an additional 10-12 potential term.Google Scholar
  39. 39.
    Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.R., Cheatham, T.E., Ferguson, D.M., Seibel, G.L., Singh, U.C., Weiner, P. and Kollman, P.A., AMBER4.1 (UCSF), University of California, San Francisco, CA, 1995.Google Scholar
  40. 40.
    Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M., J. Comput. Chem., 4 (1983) 187.CrossRefGoogle Scholar
  41. 41.
    Jorgensen, W.L., BOSS3.6, Yale University, New Haven, CT, 1996.Google Scholar
  42. 42.
    Friesner, R.A. and Beachy, M.D., Curr. Opin. Struct. Biol., 8 (1998) 257.PubMedCrossRefGoogle Scholar
  43. 43.
    Lyne, P.D., Hodoscek, M. and Karplus, M., J. Phys. Chem., 103 (1999) 3462.Google Scholar
  44. 44.
    Glennon, T.M. and Warshel, A., J. Am. Chem. Soc., 120 (1998) 12034.CrossRefGoogle Scholar
  45. 45.
    Stanton, R.V., Peräkylä, M., Bakowies, D. and Kollman, P.A., J. Am. Chem. Soc., 120 (1998) 3448.CrossRefGoogle Scholar
  46. 46.
    Srinivasan, J., Cheatham, T.E., Cieplak, P., Kollman, P.A. and Case, D.A., J. Am. Chem. Soc., 120 (1998) 9401.CrossRefGoogle Scholar
  47. 47.
    Massova, I. and Kollman, P.A., J. Am. Chem. Soc., 121 (1999) 8133.CrossRefGoogle Scholar
  48. 48.
    Chong, L.T., Duan, Y., Wang, L., Massova, I. and Kollman, P.A., Proc. Natl. Acad. Sci. USA, 96 (1999) 14330.PubMedCrossRefGoogle Scholar
  49. 49.
    Darden, T., York, D. and Pedersen, L., J. Chem. Phys., 98 (1993) 10089.CrossRefGoogle Scholar
  50. 50.
    Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A., J. Am. Chem. Soc., 117 (1995) 5179.CrossRefGoogle Scholar
  51. 51.
    Karplus, M. and Kushick, J.N., Macromolecules, 14 (1981) 325.Google Scholar
  52. 52.
    Jayaram, B., Sprous, D. and Beveridge, D.L., J. Phys. Chem. B, 102 (1998) 9571.CrossRefGoogle Scholar
  53. 53.
    Sanner, M.F., Olson, A.J. and Spehner, J.C., Biopolymers, 38 (1996) 305.PubMedCrossRefGoogle Scholar
  54. 54.
    Böttger, A., Böttger, V., Garcia-Echeverria, C., Chè ne, P., Hochkeppel, H.K., Sampson, W., Ang, K., Howard, S.F., Picksley, S.M. and Lane, D.P., J. Mol. Biol., 269 (1997) 744.PubMedCrossRefGoogle Scholar
  55. 55.
    Radmer, R.J. and Kollman, P.A., J. Comput.-Aided Mol. Design, 12 (1998) 215.CrossRefGoogle Scholar
  56. 56.
    Bayly, C.I., Cieplak, P., Cornell, W.D. and Kollman, P.A., J. Phys. Chem., 97 (1993) 10269.CrossRefGoogle Scholar
  57. 57.a.
    Clackson, T., Ultsch, M.H., Wells, J.A. and de Vos, A.M., J. Mol. Biol., 277 (1998) 1111.PubMedCrossRefGoogle Scholar
  58. b.
    Cunningham, B.C. and Wells, J.A., Science, 244 (1989) 1081.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Irina Massova
    • 1
  • Peter A. Kollman
    • 1
  1. 1.Department of Pharmaceutical ChemistryUniversity of California at San FranciscoSan FranciscoU.S.A.

Personalised recommendations