Set-Valued Analysis

, Volume 8, Issue 1–2, pp 11–29 | Cite as

Necessary Conditions for Free End-Time, Measurably Time Dependent Optimal Control Problems with State Constraints

  • R. B. Vinter
  • H. Zheng


Recently, necessary conditions have been derived for fixed-time optimal control problems with state constraints, formulated in terms of a differential inclusion, under very weak hypotheses on the data. These allow the multifunction describing admissible velocities to be unbounded and possibly nonconvex valued. This paper extends the earlier necessary conditions, to allow for free end-times. A notable feature of the new free end-time necessary conditions is that they cover problems with measurably time dependent data. For such problems, standard analytical techniques for deriving free-time necessary conditions, which depend on a transformation of the time variable, no longer work. Instead, we use variational methods based on the calculus of 'essential values".

Euler Lagrange condition Hamiltonian inclusion free time state constraint nonconvex differential inclusion nonsmooth analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clarke, F. H.: Optimization and Nonsmooth Analysis, Wiley, New York, 1983.Google Scholar
  2. 2.
    Clarke, F. H., Loewen, P. D., and Vinter, R. B.: Differential inclusion with free time, Ann. Inst. H. Poincaré 5 (1988), 573–593.Google Scholar
  3. 3.
    Ioffe, A. D.: Euler Lagrange and Hamiltonian formalisms in dynamic optimization, Trans. Amer. Math. Soc. 349 (1997), 2871–2900.Google Scholar
  4. 4.
    Ioffe, A. D. and Rockafellar, R. T.: The Euler and Weierstrass conditions for nonsmooth variational problems, Calc. Var. 4 (1996), 59–89.Google Scholar
  5. 5.
    Loewen, P. D.: Optimal Control Via Nonsmooth Analysis, CRM Proc. Lecture Notes, Amer. Math. Soc., Providence, 1993.Google Scholar
  6. 6.
    Mordukhovich, B. S.: Discrete approximations and refined Euler Lagrange conditions for nonconvex differential inclusions, SIAM J. Control Optim. 33 (1995), 882–915.Google Scholar
  7. 7.
    Rockafellar, R. T.: Equivalent subgradient versions of Hamiltonian and Euler Lagrange equations in variational analysis, SIAM J. Control Optim. 34 (1996), 1300–1314.Google Scholar
  8. 8.
    Rockafellar, R. T. and Wets, R. J.-B.: Variational Analysis, Grundlehren Math. Wiss. 317, Springer-Verlag, New York, 1998.Google Scholar
  9. 9.
    Rowland, J. D. L. and Vinter, R. B.: Dynamic optimization problems with free time and active state constraints, SIAM J. Control Optim. 31 (1993), 677–697.Google Scholar
  10. 10.
    Vinter, R. B. and Zheng, H.: The extended Euler Lagrange condition for nonconvex variational problems, SIAM J. Control Optim. 35 (1997), 56–77.Google Scholar
  11. 11.
    Vinter, R. B. and Zheng, H.: The extended Euler Lagrange condition for nonconvex variational problems with state constraints, Trans. Amer. Math. Soc. 350 (1998), 1181–1204.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • R. B. Vinter
    • 1
  • H. Zheng
    • 2
  1. 1.Department of Electrical and Electronic Engineering and Centre for Process Systems EngineeringImperial CollegeLondonU.K.
  2. 2.Department of Business StudiesUniversity of EdinburghEdinburghU.K.

Personalised recommendations