Advertisement

Journal of Sol-Gel Science and Technology

, Volume 19, Issue 1–3, pp 543–547 | Cite as

Immobilization of Photosynthetic Pigments into Silica-Surfactant Nanocomposite Films

  • Hideo Hata
  • Tatsuo Kimura
  • Makoto Ogawa
  • Yoshiyuki Sugahara
  • Kazuyuki Kuroda
Article

Abstract

Highly transparent silica-surfactant nanocomposite films containing photosynthetic pigments have been successfully formed through the solubilization of chlorophyll a (Chl a) into surfactant micelles. The UV-vis absorption spectra indicated that a large amount of Chl a were transformed into pheophytin a in the films. These photosynthetic pigments were well dispersed in the surfactant assemblies and their chlorin rings were exposed to the surface of silica layers. Even under an air atmosphere, the photostability of immobilized pigments was largely improved in comparison with that in a homogeneous Chl a solution. Because both Chl a and pheophytin a molecules are effective for the photosensitive charge separation, the present film system is very suitable for heterogeneous immobilizing media for photosynthetic pigments from the viewpoint of in vitro biomimetic devices for solar energy conversion.

silica-surfactant nanocomposite film photosynthetic pigment immobilization chlorophyll pheophytin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Scheer, Chlorophylls (CRC Press, Boca Raton, FL, 1991).Google Scholar
  2. 2.
    G. Tollin, in Chlorophylls, edited by H. Scheer (CRC Press, Boca Raton, FL, 1991), ch. 1.12.Google Scholar
  3. 3.
    D. Frackowiak, B. Zelent, H. Malak, R. Cegielski, J. Goc, M. Niedbalska, and A. Ptak, Biophys. Chem. 54, 95 (1995).Google Scholar
  4. 4.
    (a) T. Miyasaka, T. Watanabe, A. Fujishima, and K. Honda, J. Am. Chem. Soc. 100, 6657 (1978); (b) T. Miyasaka, T. Watanabe, A. Fujishima, and K. Honda, Nature 277, 638 (1979).Google Scholar
  5. 5.
    M. Ogawa and K. Kuroda, Chem. Rev. 95, 399 (1995).Google Scholar
  6. 6.
    T. Itoh, A. Ishii, T. Kodera, A. Matsushima, M. Hiroto, H. Nishimura, T. Tsuzuki, T. Kamachi, I. Okura, and Y. Inada, Bioconjugate Chem. 9, 409 (1998).Google Scholar
  7. 7.
    (a) M. Ogawa, J. Am. Chem. Soc. 116, 7941 (1994); (b) M. Ogawa, Chem. Commun. 1149 (1996); (c) M. Ogawa, T. Igarashi, and K. Kuroda, Bull. Chem. Soc. Jpn. 70, 2833 (1997).Google Scholar
  8. 8.
    M. Ogawa, Langmuir 11, 4639 (1995).Google Scholar
  9. 9.
    M. Ogawa, T. Igarashi, and K. Kuroda, Chem. Mater. 10, 1382 (1998).Google Scholar
  10. 10.
    T. Watanabe, A. Hongu, K. Honda, M. Nakazato, M. Konno, and S. Saitoh, Anal. Chem. 56, 251 (1984).Google Scholar
  11. 11.
    T. Watanabe and M. Kobayashi, in Chlorophylls, edited by H. Scheer (CRC Press, Boca Raton, FL, 1991), ch. 1.11.Google Scholar
  12. 12.
    A.N. Semenova, V.V. Nikandrov, and A.A. Krasnovsky, J. Photochem. Photobiol. B 1, 85 (1987).Google Scholar
  13. 13.
    J.-P. Chauvet, R. Viovy, E.J. Land, R. Santus, and T.G. Truscott, J. Phys. Chem. 87, 592 (1983).Google Scholar
  14. 14.
    R.K. Iler, The Chemistry of Silica (Wiley-Interscience, New York, 1979).Google Scholar
  15. 15.
    S.B. Brown, J.D. Houghton, and G.F. Hendry, in Chlorophylls, edited by H. Scheer (CRC Press, Boca Raton, FL, 1991), ch. 2.6.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Hideo Hata
    • 1
  • Tatsuo Kimura
    • 1
  • Makoto Ogawa
    • 2
    • 3
  • Yoshiyuki Sugahara
    • 1
  • Kazuyuki Kuroda
    • 1
    • 4
  1. 1.Department of Applied ChemistryWaseda UniversityTokyoJapan
  2. 2.PRESTOJapan Science and Technology Corporation;Japan
  3. 3.Institute of Earth ScienceWaseda UniversityTokyoJapan
  4. 4.Kagami Memorial Laboratory for Materials Science and TechnologyWaseda UniversityTokyoJapan

Personalised recommendations