Group Decision and Negotiation

, Volume 9, Issue 5, pp 355–377 | Cite as

ELECTRE TRI for Groups with Imprecise Information on Parameter Values

  • Luis Dias
  • João Clímaco


ELECTRE TRI is a well-known method to assign actions to predefined ordered categories, considering multiple criteria. Using this method requires setting many parameters, which is often a difficult task. We consider the case where a group of Decision Makers (DMs) is unsure of which values each parameter should take, which may result from insufficient, imprecise or contradictory information, as well as from lack of consensus among the group members. In a framework where DMs provide constraints bounding and interrelating the parameter values, rather than fixing precise figures, we discuss the problem of finding the best and worst category that each action may attain.

ELECTRE TRI decision by consensus imprecise/partial information robustness analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Athanassopoulos, A. D., and V. V. Podinovski. (1997). “Dominance and Potential Optimality in MCDA with Imprecise Information,” Journal of the Operational Research Society 48, 142–150.Google Scholar
  2. Avis, D., and K. Fukuda. (1992). “A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of Arrangements and Polyhedra,” Discrete and Computational Geometry 8, 295–313.Google Scholar
  3. Bana e Costa, C. A., and Ph. Vincke. (1995). “Measuring Credibility of Compensatory Preference Statements When Trade-Offs are Interval Determined,” Theory and Decision 39, 127–155.Google Scholar
  4. Bazaraa, M. S., H. D. Sherali, and C. M. Shetty. (1993). Nonlinear programming: theory and algorithms, 2nd Ed., Wiley.Google Scholar
  5. Dias, L., J. P. Costa, and J. N. Clímaco. (1997). “Conflicting Criteria, Cooperating Processors-Some Experiments on Implementing a Multicriteria Decision Support Method on a Parallel Computer,” Computers and Operations Research 24, 805–817.Google Scholar
  6. Dias, L.C., and J. N. Clímaco. (1999). “On Computing ELECTRE's Credibility Indices Under Partial Information,” Journal of Multi-Criteria Decision Analysis 8, 74–92.Google Scholar
  7. French, S. (1995). “Uncertainty and Imprecision: Modelling and Analysis,” Journal of the Operational Research Society 46, 70–79.Google Scholar
  8. Gromicho, J. (1998). Quasiconvex optimization and location theory, Applied Optimization 9, Kluwer, Dordrecht.Google Scholar
  9. Hazen, G. B. (1986). “Partial Information, Dominance and Potential Optimality in Multiattribute Utility Theory,” Operations Research 34(2), 297–310.Google Scholar
  10. Henggeler Antunes, C., and J. N. Clímaco. (1992). “Sensitivity Analysis in MCDM Using the Weight Space,” Operations Research Letters 12, 187–196.Google Scholar
  11. Horst, R., and H. Tuy. (1996). Global optimization: deterministic approaches, 3rd Ed., Springer.Google Scholar
  12. Kim, S.-H., and B.-S. Ahn. (1997). “Group Decision Making Procedure Considering Preference Strength Under Incomplete Information,” Computers and Operations Research 24, 1101–1112.Google Scholar
  13. Lemaréchal, C. (1989). “Nondifferentiable optimization,” in G. L. Nemhauser et al. (eds.) Handbooks in Operations Research/Management Science, Vol. 1. Elsevier, 529-572.Google Scholar
  14. Mousseau, V. (1993). Problémes liés à l'evaluation de l'importance relative des critères en aide multicritère à la décision: refléxions théoriques, experimentation et implémentation informatique, PhD Thesis, Université Paris-Dauphine.Google Scholar
  15. Mousseau, V., R. Slowinski, and P. Zielniewicz. (1999). ELECTRE TRI 2.0a: Methodological Guide and User's Manual, Document du LAMSADE, No. 111, Université Paris-Dauphine.Google Scholar
  16. Raiffa, H. (1982). The art and Science of Negotiation. Harvard University Press, Cambridge (Ma).Google Scholar
  17. Rinnooy Kan, A. H. G., and G. T. Timmer. (1989). “Global optimization,” in G. L. Nemhauser et al. (eds.) Handbooks in Operations Research/Management Science, Vol. 1. Elsevier, 631-662.Google Scholar
  18. Rios Insua D., and S. French. (1991). “A Framework for Sensitivity Analysis in Discrete Multi-Objective Decision-Making,” European Journal of Operational Research 54, 176–190.Google Scholar
  19. Roy, B. (1991). “The Outranking Approach and the Foundations of ELECTRE Methods,” Theory and Decision 31, 49–73.Google Scholar
  20. Roy, B. (1998). “A Missing Link in OR-DA: Robustness Analysis,” Foundations of Computing and Decision Sciences 23, 141–160.Google Scholar
  21. Roy, B., and D. Bouyssou. (1989). “Main Sources of Inaccurate Determination, Uncertainty and Imprecision in Decision Models,” Mathematical and Computer Modelling 12, 1245–1254.Google Scholar
  22. Roy, B., and D. Bouyssou. (1993). Aide multicritère à la décision: méthodes et cas, Economica, Paris.Google Scholar
  23. Weber, M. (1987). “Decision Making with Incomplete Information,” European Journal of Operational Research 28, 44–57.Google Scholar
  24. Yu, W. (1992). ELECTRE TRI. Aspects méthodologiques et guide d'utilisation, Document du LAMSADE, No. 74, Université Paris-Dauphine.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Luis Dias
    • 1
    • 2
  • João Clímaco
    • 3
    • 1
  1. 1.Faculty of EconomicsUniversity of CoimbraCoimbraPortugal
  2. 2.INESCCoimbraPortugal
  3. 3.INSECCoimbraPortugal

Personalised recommendations