Perspectives in Drug Discovery and Design

, Volume 20, Issue 1, pp 171–190 | Cite as

Virtual screening with solvation and ligand-induced complementarity

  • Volker Schnecke
  • Leslie A. Kuhn
Article

Abstract

We present our database-screening tool SLIDE, which is capable of screening large data sets of organic compounds for potential ligands to a given binding site of a target protein. Its main feature is the modeling of induced complementarity by making adjustments in the protein side chains and ligand upon binding. Mean-field theory is used to balance the conformational changes in both molecules in order to generate a shape-complementary interface. Solvation is considered by prediction of water molecules likely to be conserved from the crystal structure of the ligand-free protein, and allowing them to mediate ligand interactions, if possible, or including a desolvation penalty when they are displaced by ligand atoms that do not replace the lost hydrogen bonds.A data set of over 175 000 organic molecules was screened for potential ligands to the progesterone receptor, dihydrofolate reductase, and a DNA-repair enzyme. In all cases the screening time was less than a day on a Pentium II processor, and known ligands as well as highly complementary new potential ligands were found.

bound water dihydrofolate reductase DNA repairenzymes docking drug design flexibility molecularrecognition progesterone receptor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Welch, W., Ruppert, J. and Jain, A.N., Chem. Biol., 3 (1996) 449.PubMedCrossRefGoogle Scholar
  2. 2.
    Rarey, M., Wefing, S. and Lengauer, T., J. Comput.-Aided Mol. Design, 10 (1996) 41.CrossRefGoogle Scholar
  3. 3.
    Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.PubMedCrossRefGoogle Scholar
  4. 4.
    Jorgensen, W.L., Science, 254 (1991) 954.PubMedGoogle Scholar
  5. 5.
    Schnecke, V., Swanson, C.A., Getzoff, E.D., Tainer, J.A. and Kuhn, L.A., Proteins Struct. Funct. Genet., 33 (1998) 74.PubMedGoogle Scholar
  6. 6.
    Betts. M.J. and Sternberg, J.E., Protein Eng., 12 (1999) 271.PubMedCrossRefGoogle Scholar
  7. 7.
    Schnecke, V. and Kuhn, L., Proteins Struct. Funct. Genet., 2000 (manuscript submitted).Google Scholar
  8. 8.
    Raymer, M.L., Sanschagrin, P.C., Punch, W.F., Venkataraman, S., Goodman, E.D. and Kuhn, L.A., J. Mol. Biol., 265 (1997) 445.PubMedCrossRefGoogle Scholar
  9. 9.
    Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.PubMedCrossRefGoogle Scholar
  10. 10.
    Meng, E.C., Shoichet, B.K. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 505.CrossRefGoogle Scholar
  11. 11.
    Shoichet, B.K. and Kuntz, I.D., Protein Eng., 6 (1993) 723.PubMedGoogle Scholar
  12. 12.
    Böhm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 61.CrossRefGoogle Scholar
  13. 13.
    Böhm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 593.CrossRefGoogle Scholar
  14. 14.
    Böhm, H.-J., J. Comput.-Aided Mol. Design, 10 (1996) 265.CrossRefGoogle Scholar
  15. 15.
    Rarey, M., Kramer, B. and Lengauer, T., J. Comput.-Aided Mol. Design, 11 (1997) 369.CrossRefGoogle Scholar
  16. 16.
    Jones, G., Willett, P. and Glen, R.C., J. Mol. Biol., 245 (1995) 43.PubMedCrossRefGoogle Scholar
  17. 17.
    Jones, G., Willett, P., Glen, R.C., Leach, A.R. and Taylor, R., J. Mol. Biol., 267 (1997) 727.PubMedCrossRefGoogle Scholar
  18. 18.
    Morris, G.M., Goodsell, D.S., Huey, R. and Olson, A.J., J. Comput.-Aided Mol. Design, 10 (1996) 293.CrossRefGoogle Scholar
  19. 19.
    Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R.S., Hart, W.E., Belew, R.K. and Olson, A.J., J. Comput. Chem., 19(14) (1998) 1639.CrossRefGoogle Scholar
  20. 20.
    Kuntz, I.D., Meng, E.C. and Shoichet, B.K., Acc. Chem. Res., 27 (1994) 117.CrossRefGoogle Scholar
  21. 21.
    Fischer, D., Lin, S. L., Wolfson, H. L. and Nussinov, R., J. Mol. Biol., 248 (1995) 459.PubMedGoogle Scholar
  22. 22.
    Ruppert, J., Welch, W. and Jain, A.N., Protein Sci., 6 (1997) 524.PubMedCrossRefGoogle Scholar
  23. 23.
    Oshiro, C.M., Kuntz, I.D. and Scott Dixon, J., J. Comput.-Aided Mol. Design, 9 (1995) 113.CrossRefGoogle Scholar
  24. 24.
    Eisen, M.B., Wiley, D.C., Karplus, M. and Hubbard, R.E., Proteins Struct. Funct. Genet., 19 (1994) 199.PubMedCrossRefGoogle Scholar
  25. 25.
    Shoichet, B.K., Stroud, R.M., Santi, D.V., Kuntz, I.D. and Perry, K.M., Science, 259 (1993) 1445.PubMedGoogle Scholar
  26. 26.
    Böhm, H.-J., J. Comput.-Aided Mol. Design, 8 (1994) 623.CrossRefGoogle Scholar
  27. 27.
    Gschwend, D.A., Sirawaraporn, W., Santi, D.V. and Kuntz, I.D., Proteins Struct. Funct. Genet., 29 (1997) 59.PubMedGoogle Scholar
  28. 28.
    Lorber, D.M. and Shoichet, B.K., Protein Sci., 7 (1998) 938.PubMedCrossRefGoogle Scholar
  29. 29.
    Shoichet, B.K., Leach, A.R. and Kuntz, I.D., Proteins Struct. Funct. Genet., 34 (1999) 4.PubMedCrossRefGoogle Scholar
  30. 30.
    Makino, S., Ewing, T.J.A. and Kuntz, I.D., J. Comput.-Aided Mol. Design, 13 (1999) 513.CrossRefGoogle Scholar
  31. 31.
    Leach, A.R., J. Mol. Biol., 235 (1994) 345.PubMedGoogle Scholar
  32. 32.
    Jackson, R.M., Gabb, H.A. and Sternberg, M.J.E., J. Mol. Biol., 276 (1998) 265.PubMedCrossRefGoogle Scholar
  33. 33.
    Totrov, M. and Abagyan, R., Proteins Struct. Funct. Genet., Supplement 1 (1997) 215.Google Scholar
  34. 34.
    Sandak, B., Wolfson, H.J. and Nussinov, R., Proteins Struct. Funct. Genet., 32 (1998) 159.PubMedCrossRefGoogle Scholar
  35. 35.
    Knegtel, R.M.A., Kuntz, I.D. and Oshiro, C.M., J. Mol. Biol., 266 (1997) 424.PubMedCrossRefGoogle Scholar
  36. 36.
    Wassserman, Z.R. and Hodge, C.N., Proteins Struct. Funct. Genet., 24 (1996) 227.CrossRefGoogle Scholar
  37. 37.
    Apostolakis, J., Plückthun, A. and Caflisch, A., J. Comput. Chem., 19 (1998) 21.CrossRefGoogle Scholar
  38. 38.
    Mangoni, M., Roccatano, D. and Di Nola, A., Proteins Struct. Funct. Genet., 35 (1999) 153.PubMedCrossRefGoogle Scholar
  39. 39.
    Poornima, C.S. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 500.CrossRefGoogle Scholar
  40. 40.
    Poornima, C.S. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 513.CrossRefGoogle Scholar
  41. 41.
    Ladbury, J.E., Chem. Biol., 3 (1996) 973.PubMedCrossRefGoogle Scholar
  42. 42.
    Sanschagrin, P.C. and Kuhn, L.A., Protein Sci., 7 (1998) 2054.PubMedCrossRefGoogle Scholar
  43. 43.
    Rarey, M., Kramer, B. and Lengauer, T., Proteins Struct. Funct. Genet., 34 (1999) 17.PubMedCrossRefGoogle Scholar
  44. 44.
    Lawrence, M.C. and Davis, P.C., Proteins Struct. Funct. Genet., 12 (1992) 31.PubMedCrossRefGoogle Scholar
  45. 45.
    Toyoda, T., Brobey, R.K.B., Sano, G., Horii, T., Tomioka, N. and Itai, A., Biochem. Biophys. Res. Commun., 235 (1997) 515.PubMedCrossRefGoogle Scholar
  46. 46.
    Horvath, D., J. Med. Chem., 40 (1997) 2412.PubMedCrossRefGoogle Scholar
  47. 47.
    Burkhard, P., Taylor, P. and Walkinshaw, M.D., J. Mol. Biol., 277 (1998) 449.PubMedCrossRefGoogle Scholar
  48. 48.
    Schnecke, V. and Kuhn, L.A., In Procs. ISMB 99, 7th Int. Conf. on Intelligent Systems for Molecular Biology, AAAI Press, Menlo Park, CA, 1999, pp. 242–251.Google Scholar
  49. 49.
    Kuhn, L.A., Swanson, C.A., Pique, M.E., Tainer, J.A. and Getzoff, E.D., Proteins Struct. Funct. Genet., 23 (1995) 536.PubMedCrossRefGoogle Scholar
  50. 50.
    Duda, R.O. and Hart, P.E., Pattern Classification and Scene Analysis, John Wiley & Sons, New York, NY, 1973.Google Scholar
  51. 51.
    Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V. and Mee, R.P., J. Comput.-Aided Mol. Design, 11 (1997) 425.CrossRefGoogle Scholar
  52. 52.
    Koehl, P. and Delarue, M., J. Mol. Biol., 239 (1994) 249.PubMedCrossRefGoogle Scholar
  53. 53.
    Koehl, P. and Delarue, M., Curr. Opin. Struct. Biol., 6 (1996) 222.PubMedCrossRefGoogle Scholar
  54. 54.
    Sadowski, J., Gasteiger, J. and Klebe, G., J. Chem. Inf. Comput. Sci., 34 (1994) 1000.CrossRefGoogle Scholar
  55. 55.
    Mol, C.D., Arvai, A.S., Slupphaug, G., Kavli, B., Alseth, I., Krokan, H.E. and Tainer, J.A., Cell, 80 (1995) 869.PubMedCrossRefGoogle Scholar
  56. 56.
    Parikh, S.S., Mol, C.D., Slupphaug, G., Bharati, S., Krokan, H.E. and Tainer, J.A., EMBO J., 17 (1998) 5214.PubMedCrossRefGoogle Scholar
  57. 57.
    Mol, C.D., Arvai, A.S., Sanderson, R.J., Slupphaug, G., Kavli, B., Krokan, H.E., Mosbaugh, D.W. and Tainer, J.A., Cell, 82 (1995) 701.PubMedCrossRefGoogle Scholar
  58. 58.
    Heringa, J. and Argos, P., Proteins Struct. Funct. Genet., 37 (1999) 44.PubMedCrossRefGoogle Scholar
  59. 59.
    Knegtel, R.M.A., Bayada, D.M., Engh, R.A., von der Saal, W., van Geerestein, V.J. and Grootenhuis, P.D.J., J. Comput.-Aided Mol. Design, 13 (1999) 167.CrossRefGoogle Scholar
  60. 60.
    Böhm, H.-J., J. Comput.-Aided Mol. Design, 8 (1994) 243.CrossRefGoogle Scholar
  61. 61.
    Böhm, H.-J., J. Comput.-Aided Mol. Design, 12 (1998) 309.CrossRefGoogle Scholar
  62. 62.
    Jain, A.N., J. Comput.-Aided Mol. Design, 10 (1996) 427.CrossRefGoogle Scholar
  63. 63.
    Head, R.D., Smythe, M.L., Opera, T.I., Waller, C.L., Green, S.M. and Marshall, G.R., J. Am. Chem. Soc., 118 (1996) 3959.CrossRefGoogle Scholar
  64. 64.
    Murray, C.W., Auton, T.R. and Eldridge, M.D., J. Comput.-Aided Mol. Design, 12 (1998) 503.CrossRefGoogle Scholar
  65. 65.
    Mügge, I. and Martin, Y.C., J. Med. Chem., 42(5) (1999) 791.CrossRefGoogle Scholar
  66. 66.
    Cody, V., Sutton, P.A. and Welsh, W.J., J. Am. Chem. Soc., 109 (1987) 4053.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Volker Schnecke
    • 1
  • Leslie A. Kuhn
    • 1
  1. 1.Protein Structural Analysis and Design Laboratory, Department of BiochemistryMichigan State UniversityEast LansingU.S.A.

Personalised recommendations