Journal of Sol-Gel Science and Technology

, Volume 19, Issue 1–3, pp 365–369 | Cite as

Preparation of Titania from Tetrakis(diethylamino)titanium via Hydrolysis

  • Yoshizumi Ishikawa
  • Hideyasu Honda
  • Yoshiyuki Sugahara


The conversion of tetrakis(diethylamino)titanium (Ti(NEt2)4) into titania via either a combination of hydrolysis (Ti(NEt2)4 : THF : H2O = 1 : 10 : x, x = 2, 4, 10) at ambient conditions and calcination (method A) or hydrolysis in a water-tetrahydrofuran (THF) mixture (Ti(NEt2)4 : THF : H2O = 1 : 10 : 100) at reflux (method B) was investigated. Titanium tertiary butoxide (Ti(O t Bu)4) was also used as a substitute for Ti(NEt2)4. The hydrolysis via method A resulted in the formation of amorphous solids containing organics. Thermal analyses showed that the hydrolysis products showed mass losses up to 500°C probably due to the presence of diethylamine (Et2NH) formed via the hydrolysis of Ti(NEt2)4 in the hydrolysis products, while a mass loss of the hydrolysis product from Ti(O t Bu)4 was completed up to about 200°C. After calcination at ≥600°C, anatase or a mixture of anatase and rutile was obtained. The crystallization behavior of the hydrolysis products from Ti(NEt2)4 was different from that of the hydrolysis product from Ti(O t Bu)4. The hydrolysis via method B gave only an amorphous material from Ti(NEt2)4, while a crystalline titania (anatase and brookite) formed from Ti(O t Bu)4.

titania tetrakis(diethylamino)titanium new precursor hydrolysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).Google Scholar
  2. 2.
    B. K. Coltrain, L. W. Kelts, N. J. Armstrong, and J. M. Salva, J. Sol-Gel Sci. Technol. 3, 83 (1994).Google Scholar
  3. 3.
    A. Léaustic, F. Babonneau, and J. Livage, Chem. Mater. 1, 240 (1989).Google Scholar
  4. 4.
    M. F. Lappert, P. P. Power, A. R. Sanger, and R. C. Srivastava, Metal and Metalloid Amides: Syntheses, Structures, and Physical and Chemical Properties (John & Wiley Sons, New York, 1984).Google Scholar
  5. 5.
    D. C. Bradley, Adv. Inorg. Chem. Radio chem. 15, 259 (1972).Google Scholar
  6. 6.
    D. C. Bradley and I. M. Thomas, J. Chem. Soc. 3857 (1960).Google Scholar
  7. 7.
    M. Primet, P. Pichat, and M.-V. Mathieu, J. Phys. Chem. 75, 1221 (1971).Google Scholar
  8. 8.
    A. A. Tsyganenko, D. V. Pozdnyakov, and V. N. Fiilmonov, J. Mol. Str. 29, 299 (1975).Google Scholar
  9. 9.
    T. Nakajima, H. Miyata, and Y. Kubokawa, J. Chem. Soc. Faraday Trans. 1 79, 2559 (1983).Google Scholar
  10. 10.
    I. A. Polounia, S. S. Mikhailova, A. A. Isirikyan, and N. S. Ovchinnikova, Colloids Surf. A 105, 159 (1995).Google Scholar
  11. 11.
    J. F. Banfield, B. L. Bischoff, and M. A. Anderson, Chem. Giol. 110, 211 (1993).Google Scholar
  12. 12.
    L. Springer and M. F. Yan, in Ultrastructure Processing of Ceramics, Glasses, and Composites, edited by L.L. Hench and D. R. Ulrich (John Wiley & Sons, New York, 1984), p. 464.Google Scholar
  13. 13.
    T. Lopez, E. Sanchez, P. Bosch, Y. Meas, and R. Gomez, Mater. Chem. Phys. 32, 141 (1992).Google Scholar
  14. 14.
    A. M. Bokhimi, O. Novaro, T. López, E. Sánchez, and R. Gómez, J. Mater. Res. 10, 2788 (1995).Google Scholar
  15. 15.
    A. M. Bokhimi, J. L. Boldu, E. NuQnoz, O. Novaro, T. Lopez, and R. Gomez, Mater. Res. Symp. Proc. 405, 523 (1996).Google Scholar
  16. 16.
    X. Z. Ding, Z. A. Qui, and Y. Z. He, Nanostructured Mater. 4, 663 (1994).Google Scholar
  17. 17.
    Y. Takahashi and Y. Matusoka, J. Mater. Sci. 23, 2259 (1988).Google Scholar
  18. 18.
    R. Nishide and F. Mizukami, J. Ceram. Soc. Jpn. 100, 1122 (1992).Google Scholar
  19. 19.
    S. Musić, M. Gotić, M. Ivanda, S. Popović, A. Turković, R. Trojko, A. Sekulić, and K. Furić, Mater. Sci. Eng. B47, 33 (1997).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Yoshizumi Ishikawa
    • 1
  • Hideyasu Honda
    • 2
  • Yoshiyuki Sugahara
    • 2
  1. 1.Department of Applied ChemistrySchool of Science and Engineering, Waseda UniversityTokyoJapan
  2. 2.Department of Applied ChemistrySchool of Science and Engineering, Waseda UniversityTokyoJapan

Personalised recommendations