Journal of Computer-Aided Materials Design

, Volume 7, Issue 1, pp 11–23 | Cite as

Theory of long-scale cooperative relaxation of polymer networks. Hydrodynamic interaction effects

  • Yuli Ya. Gotlib
  • Andrew A. Gurtovenko
Article

Abstract

The theory of relaxation properties of polymer networks is considered for specific long-scale cooperative motions of network chains, which have characteristic scales greater than chain dimensions between cross-links. Long-range hydrodynamic interactions between the incompressible effective viscous medium and the network moving with respect to this medium are taken into account. Two types of relaxation spectra arise. The first type of relaxation spectrum appears in the case when the symmetry of network motions is not consistent with the incompressibility of viscous medium. In this case the effective viscous medium is immobile. The second non-trivial type of relaxation spectrum is caused by the combined motion of the network and the effective viscous medium. This relaxation spectrum is very narrow, and its width depends on the network structure and the viscosity of effective viscous medium. In the case of the second type of relaxation spectrum, the network motions are localized in the volume close to the dimension of the network cell or the average chain dimension between network junctions.

Effective viscous medium Hydrodynamic interactions Polymer networks Relaxation spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ham, J.S., J. Chem. Phys., 26 (1957) 625.Google Scholar
  2. 2.
    Takemura, T., J. Polym. Sci., 28 (1958) 185.Google Scholar
  3. 3.
    Gotlib, Yu.Ya. and Salikhov, K.M., Akusticheskii Zh. (Acoustic Journal), 9 (1963) 301.Google Scholar
  4. 4.
    Gotlib, Yu.Ya., Pure Appl. Chem., 53 (1981) 1531.Google Scholar
  5. 5.
    Chompff, A.J. and Duiser, J.A., J. Chem. Phys., 45 (1966) 1505.Google Scholar
  6. 6.
    Ronca, G. and Allegra, G., J. Chem. Phys., 63 (1975) 4104.Google Scholar
  7. 7.
    Graessley, W.W., Macromolecules, 13 (1980) 372.Google Scholar
  8. 8.
    Kloczkowski, A., Mark, J.E. and Frisch, H.L., Macromolecules, 23 (1990) 3481.Google Scholar
  9. 9.
    Gotlib, Yu. and Golovachev, G., J. Non-Crystalline Solids, 172 (1994) 850.Google Scholar
  10. 10.
    Gotlib, Yu., Gurtovenko, A. and Golovachev, G., In te Nijenhuis, K. and Mijs,W. (Eds.) Chemical and Physical Networks, The Wiley Polymer Networks Group Review Series, Vol. 1, John Wiley & Sons, Chichester, U.K., 1998, pp. 505-514.Google Scholar
  11. 11.
    Gotlib, Yu.Ya. and Gurtovenko, A.A., Macromol. Theory Simul., 6 (1997) 523.Google Scholar
  12. 12.
    Gurtovenko, A.A. and Gotlib, Yu.Ya., Macromolecules, 31 (1998) 5756.Google Scholar
  13. 13.
    James, H.M. and Guth, E., J. Polym. Sci., 4 (1949) 153.Google Scholar
  14. 14.
    Doi, M. and Edwards, S.F., The Theory of Polymer Dynamics, Clarendon Press, Oxford, U.K., 1986.Google Scholar
  15. 15.
    Ferry, J.D., Viscoelastic Properties of Polymers, 3rd ed., John Wiley and Sons, New York, NY, USA, 1980.Google Scholar
  16. 16.
    Landau, L.D. and Lifshitz, E.M., Course of Theoretical Physics: Fluid Mechanics, Vol. 6, 2nd ed., Pergamon Press, Oxford, U.K., 1987.Google Scholar
  17. 17.
    Treloar, L.R.G., The Physics of Rubber Elasticity, 3rd ed., Clarendon Press, Oxford, U.K., 1975.Google Scholar
  18. 18.
    Flory, P.J., J. Chem. Phys., 66 (1977) 5270.Google Scholar
  19. 19.
    Graessley, W.W., Macromolecules, 8 (1975) 186.Google Scholar
  20. 20.
    Pearson, D.S. and Graessley, W.W., Macromolecules, 11 (1978) 528.Google Scholar
  21. 21.
    Langley, N.R., Macromolecules, 1 (1968) 348.Google Scholar
  22. 22.
    Dossin, L.M. and Graessley, W.W., Macromolecules, 12 (1979) 123.Google Scholar
  23. 23.
    Gurtovenko, AA., Ph.D. Thesis, Institute of Macromolecular Compounds, St. Petersburg, Russia, 1998.Google Scholar
  24. 24.
    Grosberg, A.Y. and Khokhlov, A.R., Statistical Physics of Macromolecules, AIP Press, New York, NY, USA, 1994.Google Scholar
  25. 25.
    Adolf, D. and Martin, J.E., Macromolecules, 24 (1991) 6721.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Yuli Ya. Gotlib
  • Andrew A. Gurtovenko

There are no affiliations available

Personalised recommendations