Journal of Sol-Gel Science and Technology

, Volume 14, Issue 3, pp 233–247 | Cite as

The Evolution of Microstructure in Nonhydrolytic Alumina Xerogels

  • Y. De Hazan
  • G.E. Shter
  • Y. Cohen
  • C. Rottman
  • D. Avnir
  • G.S. Grader
Article

Abstract

The effect of drying, aging and thermal treatment of alumina xerogels prepared by the nonhydrolytic route was investigated using SAXS, BET and HR-SEM techniques. The microstructure of the fresh xerogels prepared under different procedures varied drastically, ranging from aerogel-like mass fractals to narrow pore size distribution materials. By variation of the drying conditions the N2-BET surface area was varied from an immeasurable low level up to 600 m2/g. The initial microstructure has a significant influence on the xerogel behaviour during the post-drying heating stage. The ability to produce aerogel-like mass fractal materials from the nonhydrolytic systems is discussed. Finally, a brief theoretical treatment of the drying process of mass fractals is presented as well.

nonhydrolytic alumina xerogels SAXS BET mass fractal surface fractal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physicsand Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).Google Scholar
  2. 2.
    Sol-Gel Technology for Thin films, Fibers, Preforms, Electronics, and SpecialtyShapes, edited by L.C. Klein (Noyes, Park Ridge, New Jersey, 1988).Google Scholar
  3. 3.
    B. Himmel, Th. Gerber, H. Buerger, G. Holzhueter, and A. Olbertz, J. Non-Cryst.Solids 186, 149–158 (1995).Google Scholar
  4. 4.
    A. Emmerling, J. Gross, R. Gerlach, R. Goswin, G. Reichenauer, and J. Fricke, J. Non-Cryst. Solids 125, 230–243 (1990).Google Scholar
  5. 5.
    A. Emmerling and J. Fricke, J. Non-Cryst. Solids 145, 113–120 (1992).Google Scholar
  6. 6.
    D.W. Schafer, B.J. Olivier, C.S. Ashley, D. Richter, B. Farago, B. Frick, L. Hrubesh, M.J. van Bommel, G. Long, and S. Krueger, J. Non-Cryst. Solids 145, 105–112 (1992).Google Scholar
  7. 7.
    D.W. Schaefer, R. Pekala, and G. Beaucage, J. Non-Cryst. Solids 186, 159–167 (1995).Google Scholar
  8. 8.
    S. Acosta, P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Better ceramics through chemistry VI, Mater. Res. Soc. Symp. Proc. 346, 43 (1994).Google Scholar
  9. 9.
    R.J.P. Corriu and D. Leclercq, Angewandte Chemie, Intern. Ed. in English35, 1420–1436 (1996).Google Scholar
  10. 10.
    A. Vioux and D. Leclercq, HeterogeneousChemistry Reviews 3, 65–73 (1996).Google Scholar
  11. 11.
    R.J.P. Corriu and D. Leclercq,Comments on Inorganic Chemistry 19, 245–262 (1997).Google Scholar
  12. 12.
    A. Vioux,Chem. Mater. 9, 2292–2299 (1997).Google Scholar
  13. 13.
    P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Mater. Chemistry 6, 1925–1962 (1996); M. Andrianainarivelo, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Mater. Chemistry 6, 1665–1671 (1996); P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Chemistry of Materials 9, 694-698 (1997); M. Andrianainarivelo, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Mater. Chemistry 7, 279-284 (1997).Google Scholar
  14. 14.
    P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Better ceramics through chemistry VI, Mater. Res. Soc. Symp. Proc. 346, 339 (1994).Google Scholar
  15. 15.
    S. Acosta, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Betterceramics through chemistry VI, Mat. Res. Soc. Symp. Proc. 346, 345 (1994).Google Scholar
  16. 16.
    S. Acosta, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J.Non-Cryst. Solids. 170, 234 (1994).Google Scholar
  17. 17.
    G.S. Grader, Y. de Hazan, Y. Cohen, and D. Bravo-zhivotovskii, J. Sol-Gel Sci. Tech. 10, 5–12 (1997).Google Scholar
  18. 18.
    G.S. Grader, Y. de Hazan, D. Bravo-zhivotovskii, and G.E. Shter, J.Sol-Gel Sci. Tech. 10, 127–137 (1997).Google Scholar
  19. 19.
    O. Glatter and O. Kratky,Small Angle X-Ray Scattering (Academic Press, NY, 1982), p. 121.Google Scholar
  20. 20.
    D.M. Smith, R. Deshpande, and C.J. Brinker, Mat. Res. Soc. Symp. Proc.271, 567 (1992); R. Deshpande, D. Hua, D.M. Smith, and C.J. Brinker, J. Non-Cryst. Solids 144, 32–44 (1992); S.S. Parkash, C.J. Brinker, A.J. Hurd, and S.M. Rao, Nature 374, 439-443 (1995).Google Scholar
  21. 21.
    N. Husing and U. Schubert, Angew. Chem. Int. Ed.37, 22–45 (1998).Google Scholar
  22. 22.
    C.J. Brinker, Transactions ACA 27, 163–190 (1991).Google Scholar
  23. 23.
    D.W. Schaefer, Revue de Physique Appliquee 24, 121–126 (1989).Google Scholar
  24. 24.
    The Fractal Approach to Heterogeneous Chemistry, edited byD. Avnir (John Wiley & Sons, Chichester, 1990).Google Scholar
  25. 25.
    P. Meakin and R. Jullien, J. Chem. Phys. Rev. B 31, 246–250 (1988).Google Scholar
  26. 26.
    N. Olivi-Tran and R. Jullien, J. Sol-Gel Tech. 8, 813–817 (1997).Google Scholar
  27. 27.
    T. Woignier, L. Duffours, I. Beurrois, and J. Phalippou, J. Sol-Gel Tech. 8,789–794 (1997).Google Scholar
  28. 28.
    Y. Polevaya, J. Samuel, M. Ottolenghi, and D. Avnir,J. Sol-Gel Tech. 5, 65 (1995).Google Scholar
  29. 29.
    Y. Mizushima and M. Hori, J.Non-Cryst. Solids 167, 1–8 (1994).Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Y. De Hazan
    • 1
  • G.E. Shter
    • 1
  • Y. Cohen
    • 1
  • C. Rottman
    • 2
  • D. Avnir
    • 2
  • G.S. Grader
    • 3
  1. 1.Chemical Engineering DepartmentTechnion, HaifaIsrael
  2. 2.Institute of ChemistryThe Hebrew University of JerusalemJerusalemIsrael
  3. 3.Chemical Engineering DepartmentTechnion, HaifaIsrael

Personalised recommendations