Genetic Resources and Crop Evolution

, Volume 47, Issue 3, pp 293–304 | Cite as

Diversity of the Sheanut tree (Vitellaria paradoxa C.F. Gaertn.) in Ghana

  • P.N. Lovett
  • N. Haq

Abstract

The Sheanut tree (Vitellaria paradoxa C.F. Gaertn.) is highly valued for oil obtained from its seeds and frequently maintained in the semi-arid parklands of sub-Saharan Africa from Senegal to Uganda. Although variation has been noted for V. paradoxa subsp. paradoxa, few studies have been undertaken on patterns of phenotypic or genotypic diversity. Results are presented from 294 accessions collected in Ghana, using easily quantifiable morphological parameters. Productive mature trees varied from shrubby multi-stemmed individuals (height <5 m) to 30-m straight-boled trees with high compact canopies. The leaf lamina (tree mean ±% coefficient of variation of total mean) varied from 9.2 to 22.5 cm (±15.0%); seed length from 1.74 to 3.74 cm (±11.7%); and fat content from 29.1 to 61.9% of dry kernel weight (±9.4%). Clinal trends significantly correlated with location parameters that in turn related to environmental variation. Population variation of seed characteristics increased to the Northeast, perpendicular to the annual movement of the inter-tropical convergence zone. It is proposed that this is a consequence of past climatic changes, coupled with a lack of methodical selection for seed type when trees are maintained on agricultural land. Isozyme analysis revealed moderate to high levels of heterozygosity (He 0.2142) and high geneflow (Fst = 0.0124, Nm = 19.9), supporting results obtained from morphological studies. Isozyme and multivariate morphology analyses showed similar but weak geographical separation patterns.

clinal trends isozymes morphology population variance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbiw, D.K., 1990. Useful plants of Ghana, West African Uses of Wild and Cultivated Plants. Intermediate Technology Publications and The Royal Botanic Gardens, Kew, London.Google Scholar
  2. Adu-Ampomah, Y., J.D. Amponsah & J.A. Yidana, 1995. Collecting germplasm of Shea nut (Vitellaria paradoxa) in Ghana. Plant Genet. Plant Resour. Newslett. 102: 37–38.Google Scholar
  3. Aubréville, A., 1950. Flore forestière soudano-guineénne. Société d'Editions Géographiques, Maritimes et Coloniales, Paris.Google Scholar
  4. Blumler, M.A., 1996. Ecology, evolutionary theory and agricultural origins. In: Harris, D.R. (Ed.) The Origins and Spread of Agriculture and Pastoralism in Eurasia, pp. 25–50. UCL Press, London.Google Scholar
  5. Bonkoungou, E.G., 1987. Monographie du Karité, Butryospermum paradoxum (Gaertn. C.f.) Hepper, espèce agroforestière à usages multiples. Ougadougou, Burkina Faso, Institute de Recherche en Biologie et Ecologie Tropicale.Google Scholar
  6. Chevalier, A., 1943. Le Karité ou arbre à beurre: essai monographique. Rev. Int. Bot. Appl. Agric. Trop. 23: 100–120.Google Scholar
  7. Dupont, L.M. & M. Welnelt, 1996. Vegetation history of the savanna corridor between the Guinean and Congolian rain forest during the last 150,000 years. Vegetation Hist. Archaeobot. 5: 273–292.Google Scholar
  8. Ehret, C., 1984. Historical/linguistic evidence for early African food production. In: Clark, J.D. & S.A. Brandt (Eds.) From Hunters to Farmers: The Causes and Consequences of Food Production in Africa, pp. 26–35. University of California Press, Berkeley, CA.Google Scholar
  9. FAO, 1968. Ghana, Land and Water Survey in the Upper and Northern Regions (Volume 1), FAO, Rome.Google Scholar
  10. FAO, 1977. Appendix 8, Forest Genetic resource priorities. 8. Africa. Report of the Fourth session of the FAO panel of Experts on Forest Gene Resources, held in Canberra, Australia, 9-11 March 1977, pp. 62–64. FAO, Rome.Google Scholar
  11. FAO, 1984. Appendix 8, Forest Genetic resource priorities. 12. Africa. Report of the Fifth session of the FAO panel of Experts on Forest Gene Resources, held in Rome, Italy, 8-11 December 1981, pp. 86–89. FAO, Rome.Google Scholar
  12. FAO, 1988. Appendix 5, Forest Genetic resource priorities. 10. Africa. Report of the Sixth session of the FAO panel of Experts on Forest Gene Resources, held in Rome, Italy, 8-11 December 1985, pp. 65–69. FAO, Rome.Google Scholar
  13. FAO-UNESCO, 1977. Soil Map of the World: 1:5 000 000. 6. Africa, UNESCO, Paris.Google Scholar
  14. Gijsbers, H.J.M., J.J. Kessler & M.K. Knevel, 1994. Dynamics and natural regeneration of woody species in farmed parklands in the Sahel region (Province of Passore, Burkina Faso). For. Ecol. Manage. 64: 1–12.Google Scholar
  15. Hall, J.B., D.P. Aebischer, H.F. Tomlinson, E. Osei-Amaning & J.R. Hindle, 1996. Vitellaria paradoxa: a Monograph. School of Agricultural Sciences Publication Number 8, University of Wales, Bangor.Google Scholar
  16. Hall, J.B. & J.R. Hindle, 1995. Epitypification of Vitellaria paradoxa C.F. Gaertn. (Sapotaceae). Taxon 44: 409–410.Google Scholar
  17. Harlan, J.R., 1992. Crops and Man. 2nd ed. American Society of Agronomy/Crop Science Society of America, Madison, WI.Google Scholar
  18. Hegazy, A.K. & M.I. El Amry, 1998. Leaf temperatures of desert sand plants: perspectives on the adaptability of leaf morphology. African J. Ecol. 36: 34–43.Google Scholar
  19. Henry, A.N., V. Chithra & N.C. Nair, 1983. Vitellaria vs. Butryospermum (Sapotaceae). Taxon 32: 286.Google Scholar
  20. Kershaw, S.J. & E. Hardwick, 1981. Heterogeneity within commercial contract analysis samples of Shea-Nut kernels. J. Am. Oil Chem. Soc. USA 58: 706–710.Google Scholar
  21. Kessler, J.J., 1992. The influence of karité (Vitellaria paradoxa) and néré (Parkia biglobosa) trees on sorghum production in Burkina Faso. Agrofor. Syst. 17: 97–118.Google Scholar
  22. Lézine, A.-M. & G. Vergnaud-Grazzini, 1994. Evidence of forest extension in west Africa since 22,000 BP: a pollen record from the eastern tropical Atlantic. Quaternary Sci. Rev. 12: 203–210.Google Scholar
  23. Lovett, P.N. & N. Haq, 2000. Evidence for anthropic selection of the Sheanut tree (Vitellaria paradoxa). Agroforestry Syst. 48: 273–288.Google Scholar
  24. Miller, M.P., 1997. Tools for population genetic analyses (TFPGA) 1.3: A Windows program for the analysis of allozyme and molecular population genetic data. Computer software distributed by author.Google Scholar
  25. Nei, M., 1972. Genetic distance between populations. Am. Nat. 106: 283–292.Google Scholar
  26. Neumann, K., S. Kahlheber & D. Uebel, 1998. Remains of woody plants from Saouga, a medieval west African village. Vegetation Hist. Archaeobot. 7: 57–77.Google Scholar
  27. Ruyssen, B., 1957. Le Karité au Soudan. Agron. Trop. 12: 144–172, 279-306, 415-440.Google Scholar
  28. Ryan, K.G., K.R. Markham, S.J. Bloor, J.M. Bradley, K.A. Mitchell & B.R. Jordan, 1998. UVB radiation induced increase in quercetin: kaempferol ratio in wild-type and transgenic lines of Petunia. Photochem. Photobiol. 68: 323–330.Google Scholar
  29. Salzmann, U. & M. Waller, 1998. The Holocene vegetational history of Nigerian Sahel based on multiple pollen profiles. Rev. Paleobot. Palynol. 100: 39–72.Google Scholar
  30. Schreckenberg, K., 1996. Forests, Fields and Markets: A Study of Indigenous Tree Products in the Woody Savannas of the Bassila Region, Benin. Ph.D. Thesis, University of London.Google Scholar
  31. Sokal, R.B. & C.A. Braumann, 1980. Significance tests for coef-ficients of variation and variability profiles. Syst. Zool. 29: 50–63.Google Scholar
  32. Talbot, M. & T. Johannessen, 1992. A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planetary Sci. Lett. 10: 23–37.Google Scholar
  33. Wendel, J.F. & N.F. Weeden, 1989. Visualisation and interpretation of plant isozymes. In: Soltis, D.E. & P.S. Soltis (Eds.), Isozymes in Plant Biology, pp. 5–44. Dioscorides Press, Portland, OR.Google Scholar
  34. Wills, J.B., 1962. Agriculture and Land Use in Ghana. Oxford University Press, Oxford.Google Scholar
  35. Wright, S., 1965. The interpretation of population structure by Fstatistics with special regard to systems of mating. Evolution 19: 395–420.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • P.N. Lovett
    • 1
  • N. Haq
    • 2
  1. 1.The Shea Project, COVOL UgandaLiraUganda
  2. 2.Environmental Research Group, Institute of Irrigation and Development StudiesThe University of SouthamptonSouthamptonU.K.

Personalised recommendations