Applied Categorical Structures

, Volume 9, Issue 2, pp 173–216

Iteration 2-theories

  • S. L. Bloom
  • Z. Ésik
  • A. Labella
  • E. G. Manes
Article

Abstract

The axioms of iteration 2-theories capture, up to isomorphism, the equational properties of iteration in conjunction with horizontal and vertical composition in all algebraically complete categories. We give a concrete representation of the free iteration 2-theory generated by a 2-signature.

algebraic theories iteration theories 2-categories initiality fixed point operation equational logic rewriting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A. and Ullman, J.: The theory of Parsing, Translation, and Compiling. Vol. I: Parsing, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1972.Google Scholar
  2. 2.
    Backhouse, R., Birjsterveld, M., van Geldrop, R. and van derWoude, J.: Categorical fixed point calculus, in Category Theory and Computer Science’ 95, Lecture Notes in Comput. Sci. 953, Springer-Verlag, 1995, pp. 159-179.Google Scholar
  3. 3.
    Bloom, S. L., Elgot, C. C. and Wright, J. B.: Solutions of the iteration equation and extension of the scalar iteration operation, SIAM J. Comput. 9 (1980), 26-45.Google Scholar
  4. 4.
    Bloom, S. L., Elgot, C. C. and Wright, J. B.: Vector iteration in pointed iterative theories, SIAM J. Comput. 9 (1980), 525-540.Google Scholar
  5. 5.
    Bloom, S. L. and Ésik, Z.: Iteration Theories: The Equational Logic of Iterative Processes, EATCS Monogr. Theoret. Comput. Sci., Springer-Verlag, 1993.Google Scholar
  6. 6.
    Bloom, S. L. and Ésik, Z.: Some quasi varieties of iteration theories, in Mathematical Foundations of Programming Semantics’ 93, Lecture Notes in Comput. Sci. 802, Springer-Verlag, 1994, pp. 378-409.Google Scholar
  7. 7.
    Bloom, S. L., Ésik, Z., Labella, A. and Manes, E.: Iteration 2-theories, Extended abstract, in Algebraic Methodology and Software Technology, 6th International Conference AMAST 97, Lecture Notes in Comput. Sci. 1349, Springer-Verlag, 1997, pp. 30-44.Google Scholar
  8. 8.
    Borceux, F.: Handbook of Categorical Algebra 1, Basic Category Theory, Encyclopedia Math. Appl., Vol. 50, Cambridge University Press, 1994.Google Scholar
  9. 9.
    Corradini, A. and Gadducci, F.: CPO models for infinite trem rewriting, in Proc. Conf. Algebraic Methodology and Software Technology’ 95, Lecture Notes in Comput. Sci. 936, Springer-Verlag, 1995, pp. 368-384.Google Scholar
  10. 10.
    Corradini, A. and Gadducci, F.: Rational term rewriting, in Proc. Conf. Foundations of Software Science and Computation Structures (Lisbon, 1998), Lecture Notes in Comput. Sci. 1378, Springer-Verlag, 1998, pp. 156-171.Google Scholar
  11. 11.
    Elgot, C. C., Bloom, S. L. and Tindell, R.: On the algebraic structure of rooted trees, J. Comput. System Sci. 16 (1978), 362-399.Google Scholar
  12. 12.
    Ésik, Z.: Identities in iterative and rational algebraic theories, Computational Linguistics and Computer Languages 14 (1980), 183-207.Google Scholar
  13. 13.
    Ésik, Z.: The independence of the equational axioms of iteration theories, J. Comput. System Sci. 36 (1988), 66-76.Google Scholar
  14. 14.
    Ésik, Z.: Completeness of Park induction, Theoret. Comput. Sci. 177 (1997), 217-283.Google Scholar
  15. 15.
    Ésik, Z.: Group axioms for iteration, Inform. and Comput. 148 (1999), 131-180.Google Scholar
  16. 16.
    Ésik, Z. and Labella, A.: Equational properties of iteration in algebraically complete categories, Theoret. Comput. Sci. 195 (1998), 61-89.Google Scholar
  17. 17.
    Freyd, P.: Algebraically complete categories, in Proc. of Category Theory, Como 1990, Lecture Notes in Math. 1488, Springer-Verlag, 1991, pp. 95-104.Google Scholar
  18. 18.
    Freyd, P.: Remarks on algebraically compact categories, in Applications of Categories in Computer Science, London Math. Society Lecture Notes Ser. 77, Cambridge University Press, 1992, pp. 95-106.Google Scholar
  19. 19.
    Gécseg, F. and Steinby, M.: Tree Automata, Akadémiai Kiadó, Budapest, 1984.Google Scholar
  20. 20.
    Ginali, S.: Regular trees and the free iterative theory, J. Comput. System Sci. 18 (1979), 228-242.Google Scholar
  21. 21.
    Kelly, G. M. and Street, R.: Review of the elements of 2-categories, in Lecture Notes in Math. 420, Springer-Verlag, 1974, pp. 76-103.Google Scholar
  22. 22.
    Lambek, J.: A fixed point theorem for complete categories, Math. Z. 103 (1968), 151-161.Google Scholar
  23. 23.
    Lallement, G.: Semigroups and Combinatorial Applications, Wiley, 1979.Google Scholar
  24. 24.
    Lawvere, F. L.: Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 869-873.Google Scholar
  25. 25.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency, Theoret. Comput. Sci. 96 (1992), 73-155.Google Scholar
  26. 26.
    Park, D.: Concurrency and automata on infinite sequences, in Proc. Conf. Gesellschaft für Informatik, Lecture Notes in Comput. Sci. 104, Springer-Verlag, 1981, pp. 167-183.Google Scholar
  27. 27.
    Power, A. J.: An abstract formulation for rewrite systems, in Proc. Conf. Category Theory and Computer Science, Lecture Notes in Comput. Sci. 389, Springer-Verlag, 1989, pp. 300-312.Google Scholar
  28. 28.
    Wright, J. B., Thatcher, J., Goguen, J. andWagner, E. G.: Rational algebraic theories and fixedpoint solutions, in Proc. 17th IEEE Symposium on Foundations of Computing, 1976, pp. 147-158.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • S. L. Bloom
    • 1
  • Z. Ésik
    • 2
  • A. Labella
    • 3
  • E. G. Manes
    • 4
  1. 1.Dept. of Computer ScienceStevens Institute of TechnologyHobokenUSA
  2. 2.Dept. of Computer ScienceA. József UniversityHungary
  3. 3.Dept. of Computer ScienceUniversity of Rome “La Sapienza”RomeItaly
  4. 4.Dept. of MathematicsUniversity of MassachusettsAmherstUSA

Personalised recommendations