Applied Categorical Structures

, Volume 9, Issue 2, pp 173–216

Iteration 2-theories

  • S. L. Bloom
  • Z. Ésik
  • A. Labella
  • E. G. Manes


The axioms of iteration 2-theories capture, up to isomorphism, the equational properties of iteration in conjunction with horizontal and vertical composition in all algebraically complete categories. We give a concrete representation of the free iteration 2-theory generated by a 2-signature.

algebraic theories iteration theories 2-categories initiality fixed point operation equational logic rewriting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A. and Ullman, J.: The theory of Parsing, Translation, and Compiling. Vol. I: Parsing, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1972.Google Scholar
  2. 2.
    Backhouse, R., Birjsterveld, M., van Geldrop, R. and van derWoude, J.: Categorical fixed point calculus, in Category Theory and Computer Science’ 95, Lecture Notes in Comput. Sci. 953, Springer-Verlag, 1995, pp. 159-179.Google Scholar
  3. 3.
    Bloom, S. L., Elgot, C. C. and Wright, J. B.: Solutions of the iteration equation and extension of the scalar iteration operation, SIAM J. Comput. 9 (1980), 26-45.Google Scholar
  4. 4.
    Bloom, S. L., Elgot, C. C. and Wright, J. B.: Vector iteration in pointed iterative theories, SIAM J. Comput. 9 (1980), 525-540.Google Scholar
  5. 5.
    Bloom, S. L. and Ésik, Z.: Iteration Theories: The Equational Logic of Iterative Processes, EATCS Monogr. Theoret. Comput. Sci., Springer-Verlag, 1993.Google Scholar
  6. 6.
    Bloom, S. L. and Ésik, Z.: Some quasi varieties of iteration theories, in Mathematical Foundations of Programming Semantics’ 93, Lecture Notes in Comput. Sci. 802, Springer-Verlag, 1994, pp. 378-409.Google Scholar
  7. 7.
    Bloom, S. L., Ésik, Z., Labella, A. and Manes, E.: Iteration 2-theories, Extended abstract, in Algebraic Methodology and Software Technology, 6th International Conference AMAST 97, Lecture Notes in Comput. Sci. 1349, Springer-Verlag, 1997, pp. 30-44.Google Scholar
  8. 8.
    Borceux, F.: Handbook of Categorical Algebra 1, Basic Category Theory, Encyclopedia Math. Appl., Vol. 50, Cambridge University Press, 1994.Google Scholar
  9. 9.
    Corradini, A. and Gadducci, F.: CPO models for infinite trem rewriting, in Proc. Conf. Algebraic Methodology and Software Technology’ 95, Lecture Notes in Comput. Sci. 936, Springer-Verlag, 1995, pp. 368-384.Google Scholar
  10. 10.
    Corradini, A. and Gadducci, F.: Rational term rewriting, in Proc. Conf. Foundations of Software Science and Computation Structures (Lisbon, 1998), Lecture Notes in Comput. Sci. 1378, Springer-Verlag, 1998, pp. 156-171.Google Scholar
  11. 11.
    Elgot, C. C., Bloom, S. L. and Tindell, R.: On the algebraic structure of rooted trees, J. Comput. System Sci. 16 (1978), 362-399.Google Scholar
  12. 12.
    Ésik, Z.: Identities in iterative and rational algebraic theories, Computational Linguistics and Computer Languages 14 (1980), 183-207.Google Scholar
  13. 13.
    Ésik, Z.: The independence of the equational axioms of iteration theories, J. Comput. System Sci. 36 (1988), 66-76.Google Scholar
  14. 14.
    Ésik, Z.: Completeness of Park induction, Theoret. Comput. Sci. 177 (1997), 217-283.Google Scholar
  15. 15.
    Ésik, Z.: Group axioms for iteration, Inform. and Comput. 148 (1999), 131-180.Google Scholar
  16. 16.
    Ésik, Z. and Labella, A.: Equational properties of iteration in algebraically complete categories, Theoret. Comput. Sci. 195 (1998), 61-89.Google Scholar
  17. 17.
    Freyd, P.: Algebraically complete categories, in Proc. of Category Theory, Como 1990, Lecture Notes in Math. 1488, Springer-Verlag, 1991, pp. 95-104.Google Scholar
  18. 18.
    Freyd, P.: Remarks on algebraically compact categories, in Applications of Categories in Computer Science, London Math. Society Lecture Notes Ser. 77, Cambridge University Press, 1992, pp. 95-106.Google Scholar
  19. 19.
    Gécseg, F. and Steinby, M.: Tree Automata, Akadémiai Kiadó, Budapest, 1984.Google Scholar
  20. 20.
    Ginali, S.: Regular trees and the free iterative theory, J. Comput. System Sci. 18 (1979), 228-242.Google Scholar
  21. 21.
    Kelly, G. M. and Street, R.: Review of the elements of 2-categories, in Lecture Notes in Math. 420, Springer-Verlag, 1974, pp. 76-103.Google Scholar
  22. 22.
    Lambek, J.: A fixed point theorem for complete categories, Math. Z. 103 (1968), 151-161.Google Scholar
  23. 23.
    Lallement, G.: Semigroups and Combinatorial Applications, Wiley, 1979.Google Scholar
  24. 24.
    Lawvere, F. L.: Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 869-873.Google Scholar
  25. 25.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency, Theoret. Comput. Sci. 96 (1992), 73-155.Google Scholar
  26. 26.
    Park, D.: Concurrency and automata on infinite sequences, in Proc. Conf. Gesellschaft für Informatik, Lecture Notes in Comput. Sci. 104, Springer-Verlag, 1981, pp. 167-183.Google Scholar
  27. 27.
    Power, A. J.: An abstract formulation for rewrite systems, in Proc. Conf. Category Theory and Computer Science, Lecture Notes in Comput. Sci. 389, Springer-Verlag, 1989, pp. 300-312.Google Scholar
  28. 28.
    Wright, J. B., Thatcher, J., Goguen, J. andWagner, E. G.: Rational algebraic theories and fixedpoint solutions, in Proc. 17th IEEE Symposium on Foundations of Computing, 1976, pp. 147-158.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • S. L. Bloom
    • 1
  • Z. Ésik
    • 2
  • A. Labella
    • 3
  • E. G. Manes
    • 4
  1. 1.Dept. of Computer ScienceStevens Institute of TechnologyHobokenUSA
  2. 2.Dept. of Computer ScienceA. József UniversityHungary
  3. 3.Dept. of Computer ScienceUniversity of Rome “La Sapienza”RomeItaly
  4. 4.Dept. of MathematicsUniversity of MassachusettsAmherstUSA

Personalised recommendations