Science & Education

, Volume 10, Issue 3, pp 243–266 | Cite as

How Important are the Laws of Definite and Multiple Proportions in Chemistry and Teaching Chemistry? – A History and Philosophy of Science Perspective

  • Mansoor Niaz


The main objectives of this study are:(1) to elaborate a framework based on a rationalreconstruction of developments that led to theformulation of the laws of definite and multipleproportions; (2) to ascertain students' views of the two laws; (3) to formulate criteria based on theframework for evaluating chemistry textbooks'treatment of the two laws; and (4) to provide arationale for chemistry teachers to respond to the question: Can we teach chemistry without the laws of definite and multiple proportions? Results obtained show that most of the textbooks present the laws of definite and multiple proportions within aninductivist perspective, characterized by thefollowing sequence: experimental findings showed that chemical elements combined in fixed/multipleproportions, followed by the formulation of the laws of definite and multiple proportions, and finally Dalton's atomic theory was postulated to explain the laws. Students were found to be reluctant to question the laws that they learnt as the building blocks of chemistry. It is concluded that by emphasizing the laws of definite and multiple proportions, textbooks inevitably endorse the dichotomy between theories and laws, which is questioned by philosophers of science (Lakatos 1970; Giere 1995a, b). An alternativeapproach is presented which shows that we can teach chemistry without the laws of definite and multiple proportions.


Building Block Experimental Finding Chemical Element Science Perspective Teaching Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acevedo Díaz, J. A.: 1989, 'Comprensión Newtoniana de la Caída de Cuerpos. Un Estudio de su Evolución en el Bachillerato', Enseñanza de las Ciencias 7, 241-246.Google Scholar
  2. Ander, P. & Sonnessa, A. J.: 1981, Principles of Chemistry (Spanish edition), Macmillan, New York.Google Scholar
  3. Anderson, C. B., Ford, P. C. & Kennedy, J. H.: 1973, Chemistry: Principles and Applications, Heath, Lexington, MA.Google Scholar
  4. Avogadro, A.: 1811, 'Essay on a Manner of Determining the Relative Masses of the Elementary Molecules of Bodies, and the Proportions in which they enter into these Compounds', Alembic Club Reprints 4, 28-51 (Edinburgh 1923).Google Scholar
  5. Blanco, R. & Niaz, M.: 1997, 'Epistemological Beliefs of Students and Teachers about the Nature of Science: From “Baconian Inductive Ascent” to the “Irrelevance” of Scientific Laws', Instructional Science 25, 203-231.Google Scholar
  6. Blanco, R. & Niaz, M.: 1998, 'Baroque Tower on a Gothic Base: A Lakatosian Reconstruction of Students' and Teachers' Understanding of Structure of the Atom', Science & Education 7, 327-360.Google Scholar
  7. Bodner, G. M. & Pardue, H. L.: 1989, Chemistry: An Experimental Science, Wiley, New York.Google Scholar
  8. Brackenridge, J. B.: 1989, 'Education in Science, History of Science, and the Textbook — Necessary vs. Sufficient Conditions', Interchange 20, 71-80.Google Scholar
  9. Brady, J. E. & Humiston, G. E.: 1996, General Chemistry: Principles and Structure (Spanish),Wiley, New York.Google Scholar
  10. Brown, T. L., LeMay, H. E. & Bursten, B. E.: 1998, Chemistry: The Central Science, 7th edn. (Spanish), Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  11. Brush, S. G.: 1996, 'The Reception of Mendeleev's Periodic Law in America and Britian', Isis 87, 595-628.Google Scholar
  12. Burbules, N. & Linn, M. C.: 1991, 'Science Education and Philosophy of Science: Congruence or Contradiction?' International Journal of Science Education 13, 227-241.Google Scholar
  13. Burns, R. A.: 1996, Fundamentals of Chemistry, 2nd edn. (Spanish), Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  14. Cartwright, N.: 1983, How the Laws Physics Lie, Oxford University Press, Oxford, UK.Google Scholar
  15. Cartwright, N.: 1989, Nature's Capacities and their Measurement, Clarendon Press, Oxford, UK.Google Scholar
  16. Cartwright, N.: 1991, 'Can Wholism Reconcile the Inaccuracy of Theory with the Accuracy of Prediction?', Synthese 89, 3-13.Google Scholar
  17. Chang, R.: 1999, Chemistry, 6th edn. (Spanish), McGraw-Hill, New York.Google Scholar
  18. Chinn, C. A. & Brewer, W. F.: 1993, 'The Role of Anomalous Data in Knowledge Acquisition: A Theoretical Framework and Implications for Science Instruction', Review of Educational Research 63, 1-49.Google Scholar
  19. Christie, M.: 1994, 'Philosophers versus Chemists Concerning“Laws of Nature”', Studies in History and Philosophy of Science 25, 613-629.Google Scholar
  20. Dalton, J.: 1810, A New System of Chemical Philosophy, Manchester.Google Scholar
  21. Daub, G. W. & Seese, W. S.: 1996, Basic Chemistry, 7th edn. (Spanish), Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  22. Dickerson, R. E., Gray, H. B., Darensbourg, M. Y. & Darensbourg, D. J.: 1984, Chemical Principles, 4th edn., Benjamin/Cummings, Menlo Park, CA.Google Scholar
  23. Duschl, R. A.: 1994, 'Research on the History and Philosophy of Science', in D. L. Gabel (ed.), Handbook of Research on Science Teaching, Macmillan, New York, pp. 443-465.Google Scholar
  24. Ebbing, D. D.: 1997, General Chemistry, 5th edn. (Spanish), Mc-Graw-Hill, New York.Google Scholar
  25. Elkana, Y.: 1974, 'Boltzmann's Scientific Research Program and its Alternatives', in Y. Elkana (ed.), The Interaction Between Science and Philosophy, Humanities Press, Atlantic Highlands, NJ, pp. 243-279.Google Scholar
  26. Ellis, B. D.: 1991, 'Idealization in Science', in C. Dilworth (ed.), Idealization IV: Intelligibility in Science, Rodopi, Amsterdam.Google Scholar
  27. Feynman, R.: 1967, The Character of Physical Law, MIT Press, Cambridge, MA.Google Scholar
  28. Franklin, A.: 1988, 'How Nancy Cartwright Tells Truth', British Journal for the Philosophy of Science 39, 527-529.Google Scholar
  29. Frické, M.: 1976, 'The Rejection of Avogadro's Hypotheses', in C. Howson (ed.), Method and Appraisal in the Physical Sciences: The Critical Background to Modern Science, 1800–1905, Cambridge University Press, Cambridge, UK, pp. 277-307.Google Scholar
  30. Fujii, K.: 1986, 'The Berthollet-Proust Controversy and Dalton's Chemical Atomic Theory 1800–1820', British Journal for the History of Science 19, 177-200.Google Scholar
  31. Gay-Lussac, J.-L.: 1808, 'Memoir on the Combination of Gaseous Substances with Each Other', Alembic Club Reprints 4 (Edinburgh 1923).Google Scholar
  32. Giere, R. N.: 1995a, 'Viewing Science', in R. Burian, D. Hull & M. Forbes (eds), PSA 1994, Vol. 2, Philosophy of Science Association, East Lansing, MI (revised version of the Presidential address at the Biennial Meeting of the Philosophy of Science Association, New Orleans, October 1994).Google Scholar
  33. Giere, R. N.: 1995b, 'The Skeptical Perspective: Science Without Laws of Nature', in F. Weinert (ed.), Laws of Nature: Essays on the Philosophical, Scientific and Historical Dimensions,Walter de Gruyter, Berlin, pp. 120-138.Google Scholar
  34. Gilbert, J. K. & Swift, D. J.: 1985, 'Towards a Lakatosian Analysis of the Piagetian and Alternative Conceptions Research Programs', Science Education 69, 681-696.Google Scholar
  35. Heilbron, J. L. & Kuhn, T.: 1969, 'The Genesis of the Bohr Atom', Historical Studies in the Physical Sciences 1, 211-290.Google Scholar
  36. Hein, M. & Arena, S.: 1997, Foundations of College Chemistry (Spanish), Brooks/Cole, Pacific Grove, CA.Google Scholar
  37. Hettema, H.: 1995, 'Bohr's Theory of the Atom 1913–1923: A Case Study in the Progress of Scientific Research Programmes', Studies in History and Philosophy of Modern Physics 26B, 307-323.Google Scholar
  38. Hodson, D.: 1988, 'Towards a Philosophically More Valid Science Curriculum', Science Education 72, 19-40.Google Scholar
  39. Holtzclaw, H. F. & Robinson, W. R.: 1988, General Chemistry, 8th edn., Heath, Lexington, MA.Google Scholar
  40. Ihde, A. J.: 1964, The Development of Modern Chemistry, Harper & Row, New York.Google Scholar
  41. Joesten, M. D., Johnston, D. O., Netterville, J. T. & Wood, J. L.: 1991, World of Chemistry, Saunders, Philadelphia.Google Scholar
  42. Kauffman, G. B.: 1989, 'History in the Chemistry Curriculum', Interchange 20, 81-94.Google Scholar
  43. Keenan, C.W., Wood, J.H. & Kleinfelter, D. C.: 1976, General College Chemistry, Harper & Row, New York.Google Scholar
  44. Kelly, G. J.: 1997, 'Research Traditions in Comparative Context: A Philosophical Challenge to Radical Constructivism', Science Education 81, 355-375.Google Scholar
  45. Kitchener, R. F.: 1993, 'Piaget's Epistemic Subject and Science Education: Epistemological Versus Psychological Issues', Science & Education 2, 137-148.Google Scholar
  46. Kovac, J.: 1991, 'A Capstone Experience in Chemistry', Journal of Chemical Education 68, 907-910.Google Scholar
  47. Kuhn, T.: 1970, The Structure of Scientific Revolutions, 2nd edn., University of Chicago Press, Chicago.Google Scholar
  48. Lakatos, I.: 1970, 'Falsification and the Methodology of Scientific Research Programmes', in I. Lakatos & A. Musgrave (eds.), Criticism and the Growth of Knowledge, Cambridge University Press, Cambridge, UK, pp. 91-195.Google Scholar
  49. Lakatos, I.: 1971, 'History of Science and its Rational Reconstructions', in R. C. Buck & R. S. Cohen (eds.), Boston Studies in the Philosophy of Science, Vol. VIII, D. Reidel, Dordrecht, The Netherlands, pp. 91-136.Google Scholar
  50. Linn, M. C. & Songer, N. B.: 1991, 'Teaching Thermodynamics to Middle School Students: What are Appropriate Cognitive Demands?', Journal of Research in Science Teaching 28, 885-918.Google Scholar
  51. López Rupérez, F.: 1990, 'Epistemología y Didáctica de las Ciencias. Un Análisis de Segundo Orden', Enseñanza de las Ciencias 8, 65-74.Google Scholar
  52. Mahaffy, P. G.: 1992, 'Chemistry in Context: How is Chemistry Portrayed in the Introductory Curriculum?', Journal of Chemical Education 69, 52-56.Google Scholar
  53. Mahan, B. M. & Myers, R. J.: 1990, University Chemistry, 4th edn. (Spanish), Addison-Wesley, Wilmington, DE.Google Scholar
  54. Masterton, W. L., Slowinski, E. J. & Stanitski, C. L.: 1985, Chemical Principles, 5th edn. (Spanish), Saunders, Philadelphia.Google Scholar
  55. Matthews, M. R.: 1987, 'Experiment as the Objectification of Theory: Galileo's Revolution', Proceedings of the Second International Seminar on Misconceptions and Educational Strategies in Science and Mathematics, Vol. 1, Cornell University, Ithaca, NY, pp. 289-298.Google Scholar
  56. Matthews, M. R.: 1994a, 'Vino Viejo en Botellas Nuevas: Un Problema con la Epistemología Constructivista', Enseñanza de las Ciencias 12, 79-88. (A modified version of Journal of Science Education and Technology 2, 359-370, 1993).Google Scholar
  57. Matthews, M. R.: 1994b, 'Historia, Filosofía y Enseñanza de las Ciencias: La Aproximación Actual', Enseñanza de las Ciencias 12, 255-277. (A modified version of Studies in Science Education 18, 25-51, 1990).Google Scholar
  58. Matthews, M. R.: 1994c, Science Teaching: The Role of History and Philosophy of Science, Routledge, New York.Google Scholar
  59. Matthews, M. R.: 1998, 'In Defense of Modest Goals when Teaching About the Nature of Science', Journal of Research in Science Teaching 35, 161-174.CrossRefGoogle Scholar
  60. McComas, W. F., Almazroa, H. & Clough, M. P.: 1998, 'The Role and Character of the Nature of Science in Science Education', Science & Education 7, 511-532.Google Scholar
  61. McMullin, E.: 1985, 'Galilean Idealization', Studies in History and Philosophy of Science 16, 247-273.Google Scholar
  62. Mellado, V. & Carracedo, D.: 1993, 'Contribuciones de la Filosofía de la Ciencia a la Didáctica de las Ciencias', Enseñanza de las Ciencias 11, 331-339.Google Scholar
  63. Moore, F. J. & Hall, W. T.: 1939, A History of Chemistry, McGraw-Hill, New York.Google Scholar
  64. Mortimer, C. E.: 1983, Chemistry, 5th edn., Wadsworth, Belmont, CA.Google Scholar
  65. Nash, L. K.: 1956, 'The Origin of Dalton's Chemical Atomic Theory', Isis 47, 101-116.Google Scholar
  66. Needham, P.: 1991, 'Duhem and Cartwright on the Truth of Laws', Synthese 89, 89-109.Google Scholar
  67. Newell, S. B.: 1977, Chemistry: An Introduction, Little, Brown, Boston.Google Scholar
  68. Niaz, M.: 1991, 'Role of the Epistemic Subject in Piaget's Genetic Epistemology and its Importance for Science Education', Journal of Research in Science Teaching 28, 569-580.Google Scholar
  69. Niaz, M.: 1993a, '“Progressive Problemshifts” Between Different Research Programs in Science Education: A Lakatosian Perspective', Journal of Research in Science Teaching 30, 757-765.Google Scholar
  70. Niaz, M.: 1993b, 'Competing Research Programs in Science Education: A Lakatosian Interpretation', Interchange 24, 181-190.Google Scholar
  71. Niaz, M.: 1994a, 'Más Allá del Positivismo: Una Interpretación Lakatosiana de la Enseñanza de las Ciencias', Enseñanza de las Ciencias 12, 97-100.Google Scholar
  72. Niaz, M.: 1994b, 'Enhancing Thinking Skills: Domain Specific/Domain General Strategie— Dilemma for Science Education', Instructional Science 22, 413-422.Google Scholar
  73. Niaz, M.: 1995, 'Progressive Transitions from Algorithmic to Conceptual Understanding in Student Ability to Solve Chemistry Problems: A Lakatosian Interpretation', Science Education 79, 19-36.Google Scholar
  74. Niaz, M.: 1998, 'From Cathode Rays to Alpha Particles to Quantum of Action: A Rational Reconstruction of Structure of the Atom and its Implications for Chemistry Textbooks', Science Education 82, 527-552.Google Scholar
  75. Niaz, M.: 2000, 'A Rational Reconstruction of the Kinetic Molecular Theory of Gases Based on History and Philosophy of Science and its Implications for Chemistry Textbooks', Instructional Science 28, 23-50.Google Scholar
  76. Nugayev, R.: 1991, 'The Fundamental Laws of Physics Can Tell the Truth', International Studies in the Philosophy of Science 5, 79-87.Google Scholar
  77. Oxtoby, D. W., Nachtrieb, N. H. & Freeman, W. A.: 1990, Chemistry: Science of Change, Saunders, Philadelphia.Google Scholar
  78. Papineau, D.: 1991, 'Correlations and Causes', British Journal for the Philosophy of Science 42, 397-412.Google Scholar
  79. Pauling, L.: 1952, College Chemistry, Freeman, San Francisco.Google Scholar
  80. Pauling, L.: 1964, General Chemistry, 3rd edn., Freeman, San Francisco.Google Scholar
  81. Pessoa de Carvalho, A. M. & Castro, R. S.: 1992, 'La Historia de la Ciencia como Herramienta para la Enseñanza de Física en Secundaria: Un Ejemplo de Calor y Temperatura', Enseñanza de las Ciencias 10, 289-294.Google Scholar
  82. Quagliano, J. V. & Vallarino, L. M.: 1969, Chemistry, 3rd edn., Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  83. Rocke, A. J.: 1978, 'Atoms and Equivalents: The Early Development of the Chemical Atomic Theory', Historical Studies in the Physical Sciences 9, 225-263.Google Scholar
  84. Rocke, A. J.: 1984, Chemical Atomism in the Nineteenth Century: From Dalton to Cannizaro, Ohio State University Press, Columbus, OH.Google Scholar
  85. Russell, C. A.: 1988, '“Rude and Disgraceful Beginnings”: A View of History of Chemistry from the Nineteenth Century', British Journal for the History of Science 21, 273-294.Google Scholar
  86. Rutherford, E.: 1915, 'The Constitution of Matter and the Evolution of the Elements', Annual Report of the Smithsonian Institution (Address to the Annual Meeting of the National Academy of Sciences), Smithsonian Institution, Washington, DC, pp. 167-202.Google Scholar
  87. Ryan, A. G. & Aikenhead, G. S.: 1992, 'Students' Preconceptions about the Epistemology of Science', Science Education 76, 559-580.Google Scholar
  88. Segal, B. G.: 1989, Chemistry: Experiment and Theory, 2nd edn., Wiley, New York.Google Scholar
  89. Siegel, H.: 1978, 'Kuhn and Schwab on Science Texts and the Goals of Science Education', Educational Theory 28, 302-309.Google Scholar
  90. Sienko, M. J. & Plane, R. A.: 1971, Chemistry, 4th edn., McGraw-Hill, New York.Google Scholar
  91. Sisler, H. H., Dresdner, R. D. & Mooney, W. T.: 1980, Chemistry: A Systematic Approach, Oxford University Press, New York.Google Scholar
  92. Smith, M. U. & Scharmann, L. C.: 1999, 'Defining versus Describing the Nature of Science: A Pragmatic Analysis for Classroom Teachers and Science Educators', Science Education 83, 493-509.CrossRefGoogle Scholar
  93. Solomon, J.: 1991, 'Teaching About the Nature of Science in the British National Curriculum', Science Education 75, 95-103.Google Scholar
  94. Stinner, A.: 1992, 'Science Textbooks and Science Teaching: From Logic to Evidence', Science Education 76, 1-16.Google Scholar
  95. Stoker, H. S.: 1990, Introduction to Chemical Principles, 3rd edn., Macmillan, New York.Google Scholar
  96. Taylor, H. S.: 1942, 'The Atomic Concept ofMatter', in H. S. Taylor & S. Glasstone (eds.), A Treatise on Physical Chemistry, Vol. 1, D. van Nostrand, Princeton, NJ.Google Scholar
  97. Thomson, T.: 1825, An Attempt to Establish the First Principles of Chemistry by Experiment (2 vols.), Colburn & Bentley, London.Google Scholar
  98. Thomson, T.: 1830, History of Chemistry (2 vols.), Colburn & Bentley, London.Google Scholar
  99. Whitten, K.W., Davis, R. E. & Peck, M. L.: 1998, General Chemistry, 3rd edn. (Spanish), McGraw-Hill, New York.Google Scholar
  100. Wolfe, D. H.: 1988, Introduction to College Chemistry, McGraw-Hill, New York.Google Scholar
  101. Zumdahl, S. S.: 1990, Introductory Chemistry: A Foundation, Heath, Lexington, MA.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Mansoor Niaz
    • 1
  1. 1.Chemistry DepartmentUniversidad de OrienteCumaná, Estado SucreVenezuela;

Personalised recommendations