Advertisement

Genetic Resources and Crop Evolution

, Volume 44, Issue 2, pp 185–195 | Cite as

Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting

  • J.M. Greef
  • M. Deuter
  • C. Jung
  • J. Schondelmaier
Article

Abstract

The genetic diversity of European species of Miscanthus was analyzed by AFLP technique. The genetic similarity based on six primer combinations yielded about 200 data points. The plant material included 11 clones of M. sinensis, 2 clones of M. sacchariflorus and 31 accessions of M. x giganteus. Furthermore 4 hybrids were created by crossing M. sinensis with M. sacchariflorus clones. Two clusters were found represented by M. sinensis and M. sacchariflorus clones. The M. x giganteus accessions clustered under M. sacchariflorus. A very low genetic diversity was found in the M. x giganteus pool. No polymorphism was detected between micro- and rhizome-propagated M. x giganteus accessions. Many of the M. sacchariflorus clones sampled in Botanical Gardens turned out to be M. x giganteus clones. In the hybridization of M. sinensis and M. sacchariflorus material, self-fertilization of the M. sinensis clones was determined by application of the AFLP technique. In the M. sinensis pool a typical diversification of hybrids was detected according to ornamental selection by horticulture breeders. The AFLP technique is an adequate and powerful tool to evaluate genetic diversification, to analyse the success of hybridizations and to find wrong classifications.

AFLP European Miscanthus fingerprinting genetic diversity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adati, S., 1958. Studies on the genus Miscanthus with special reference to the Japanese species suitable for breeding purpose as fodder crops. Bulletin Faculty Agricultural Mie University 17: 1-112.Google Scholar
  2. Adati, S. & I. Shiotani, 1962. The syntaxonomy of genus Miscanthus and its phylogenic status. Bulletin Faculty Agricultural Mie University 25: 1-24.Google Scholar
  3. Arumuganathan, K. & E.D. Earle, 1991. Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter 9: 208-218.Google Scholar
  4. Becker, J., P. Vos, M. Kuiper, F. Salamini & M. Heun, 1995. Combined mapping of AFLP and RFLP markers in barley. Molecular General Genetics 249: 65-73.Google Scholar
  5. El Bassam, N.,M.Dambroth & I. Jacks, 1992. DieNutzung von Miscanthus sinensis (Chinaschilf) als Energie-und Industriegrundstoff. Landbauforschung Völkenrode 42: 199-205.Google Scholar
  6. Folkertsma, R.T., J.N.A.M. Roupe van der Voort, K.E. de Groot, P.M. van Zandvoort, A. Schots, F.J. Gommers, J. Helder & J. Bakker, 1996. Gene pool similarities of potato cyst nematode populations assessed by AFLP analysis. Molecular Plant-Microbe Interactions 9: 47-54.Google Scholar
  7. Glaszman, J.C., Y.H. Lu & C. Lanaud, 1990. Variation of nuclear ribosomal DNA in sugarcane. Journal of Genetic and Breeding 44: 191-198.Google Scholar
  8. Greef, J.M. & M. Deuter, 1993. Syntaxonomy of Miscanthus x giganteus GREEF et DEU. Angewandte Botanik 67: 87-90.Google Scholar
  9. Greef, J.M., R. Pude, H. Rennebaum, K.-U. Schwarz & W. Diepenbrock, 1994. Development of above-and underground organs of Miscanthus x giganteus in Northern Germany. In: Hennink, S., van Soest, L.J.M., Pithan, K. & Hof L. (Eds.), Alternative oilseed and fibre crops for cool and wet regions of Europe, pp. 101-112. COST 814, Office for Official Publications of the European Communities, Luxembourg.Google Scholar
  10. Gower, J.C., 1972. Measures of taxonomic distance and their analysis. In: Weiner, J.S. & Huizinger, J. (Eds.), The assessment of population affinities in man, pp. 1-24. Clarendon Press, Oxford.Google Scholar
  11. Hartley, W., 1958. Studies on the origin, evolution, and distribution of Gramineae 1. The tribe Andropogoneae. Australian Journal of Botany 6: 116-128.Google Scholar
  12. Hirayoshi, I., K. Nishikawa & R. Kato, 1955. Cytogenetical studies on forage plants. 4. Self-incompatibility in Miscanthus. Japanese Journal of Breeding 5: 19-22.Google Scholar
  13. Huang Y.-J. & C.-Y. Kwo, 1985. Flowering control by long-day treatment and leaf trimming in sugarcane. Republic Taiwan Sugar Research Institute 110: 1-12.Google Scholar
  14. Jabs, U., 1995. Zytologische Untersuchungen der Chromosomen verschiedener Formen der Gattung Miscanthus. Thesis, University Hohenheim.Google Scholar
  15. Lafferty, J. & T. Lelley, 1994. Cytogenetic studies of different Miscanthus species with potential for agricultural use. Plant Breeding 113: 246-249.Google Scholar
  16. Lee, Y.L., 1964. Taxonomic studies on the genus Miscanthus. (3). Relationship among the section, subsection and species. Journal of Japanese Botanic 38: 197-205.Google Scholar
  17. Linde-Laursen, I., 1993. Cytogenetic analysis of Miscanthus "Giganteus", an interspecific hybrid. Hereditas 119: 297-300.Google Scholar
  18. Matumura, M., T. Hasegawa & Y. Saijoh, 1987. Ecological aspects of Miscanthus sinensis var. condensatus, M. sacchariflorus, and their 3x-and 4x-hybrids. III. Aboveground standing crop and response to cutting. Research Bulletin Faculty of Agricultural Gifu University 52: 315-324.Google Scholar
  19. Meksem, K., D. Leister, J. Peleman, M. Zabeau, F. Salamini & C. Gebhardt, 1995. A high resolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers. Molecular General Genetics 249: 74-81.Google Scholar
  20. Mun, H.T., 1988. Comparisons of the primary production and nutrients absorption by a Miscanthus sinensis community in different soils. Plant & Soil 112: 143-149.Google Scholar
  21. Mutoh, N., K.H. Yoshida, Y. Yokoi, M. Kimura & K. Hogetsu, 1968. Studies on the production processes and net productivity of a Miscanthus-sacchariflorus-community. Japanese Journal of Botany 20: 67-92.Google Scholar
  22. Nei, M., & W.-H. Li, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceeding of the National Academy of Science USA 76: 5269-5273.Google Scholar
  23. Numata, M. & M. Mitsudera, 1969. Efficient environmental factors in the growth and production of Miscanthus sinensis grasslands in JapanEcological judgement of grassland condition and trend. Japanese Journal of Botany 20: 135-151.Google Scholar
  24. Rohlf, F.J., 1989. NTSYS-pc numerical taxonomy and multivariate analysis system. Exeter, New YorkGoogle Scholar
  25. Saghai-Maroof, M.A, K.M. Soliman, R.A. Jorgensen, & R.W. Allard, 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance chromosomal location and population dynamics. Proceedings National Academy Science USA 81: 8014-8018.Google Scholar
  26. Schondelmaier, J., G. Steinrücken & C. Jung, 1996. Integration of AFLP markers into a linkage map of sugar beet (Beta vulgaris L.). Plant Breeding 115: 231-237.Google Scholar
  27. Schwarz, K.-U., J.M. Greef & E. Schnug, 1995. Etablierung und Biomasseproduktion von Miscanthus x giganteus unter verschiedenen Umweltbedingungen. Sonderheft Landbauforschung Völkenrode 155.Google Scholar
  28. Smith, S., S. Luk, B. Sobral, S.Muhawish, J. Peleman & M. Zabeau, 1994. Associations among inbred lines of maize using RFLP and DNA amplification technologies (AFLP and AP-PCR), and correlations with pedigree, F1 yield and heterosis. Maize Genetics Newsletter. 68: 45.Google Scholar
  29. Thomas, C.M., P. Vos, M. Zabeau, D.A. Jones, K.A. Norcott, B.P. Chadwick & J.D.G. Jones, 1995. Identification of ampli-fied restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium. Plant Journal 8, 785-794.Google Scholar
  30. van de Werf, H.M.G., W.J.M. Meijer, E.W.J.M. Mathijssen & A. Darwinkel, 1993. Potential dry matter production of Miscanthus sinensis in the Netherlands. Industrial Crops & Products 1: 203-210.Google Scholar
  31. van Eck, H.J., J.R. van der Voort, J. Draaistra, P. van Zandvoort, E. van Enckevort, B. Segers, J. Peleman, E. Jacobsen, J. Helder & J. Bakker, 1995. The inheritance and chromosomal localization of AFLP markers in a non-inbred potato offspring. Molecular Breeding 1: 397-410.Google Scholar
  32. von Wühlisch, G., M. Deuter & H.-J. Muhs, 1993. Identifizierung verschiedener Miscanthus-Sorten mittels Isoenzymen. Journal of Agronomy & Crop Science 172: 247-254.Google Scholar
  33. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Vandelee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research. 23: 4407-Google Scholar
  34. Zeidler, A., Schneider, S., C. Jung, A.E. Melchinger & P. Dittrich, 1994. The use of DNA fingerprinting in ecological studies of Phragmites australis (Cav.) Trin. ex. Steudel. Botanica Acta 107: 237-242.Google Scholar
  35. Zheng, X.H. & H. Cheng, 1989. The progressive aspects of silver grass and reed in Hubei Province. Journal Huazhong Agricultural University 6: 11-14.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • J.M. Greef
    • 1
  • M. Deuter
    • 2
  • C. Jung
    • 1
  • J. Schondelmaier
    • 1
  1. 1.Institute of Crop Science & Plant BreedingKielGermany
  2. 2.Tinplant GmbHKleinwanzleben/Bo¨rdeGermany

Personalised recommendations