Genetic Resources and Crop Evolution

, Volume 45, Issue 4, pp 355–370

Genetic diversity in wild cereals: regional and local studies and their bearing on conservation ex situ and in situ

  • Eviatar Nevo
Article

Abstract

The current alarming global crisis and extinction of biodiversity affect negatively the planet's biosphere. Conservation of biodiversity is one attempt to alleviate the pending extinction of the biosphere by humans. Genetic diversity, the basis of evolution by natural selection, is gravely threatened in the progenitors of cultivated plants and its exploration, evaluation, conservation in situ and ex situ is imperative to guarantee sustainable development. This is illustrated by the population genetics and ecology of two important progenitors of cereals wild, wheat and barley. The wild cereals are rich in adaptive genetic diversity in the Fertile Crescent, primarily in Israel, which is their center of origin and diversity. The 40–55% intrapopulation diversity level in the wild cereals contrasts sharply with the average of 80% in outbreeders. Genetic diversity in wild wheat and barley is structured, particularly in wild emmer wheat, as an 'archipelago' ecological and genetic structure. These include central, semi-isolated and ecologically peripheral and marginal isolated populations, where specific alleles and allele combinations predominate as coadapted blocks of genes, adaptive to diverse ecological stresses. These involve both physical (climatic and edaphic) and biotic (pathogens and parasites) stresses at macro- and microgeographical scales. Complementary in situ and ex situ conservation is imperative across the geographic range of these species, to safeguard their immensely important genetic resources for crop improvement.

genetic diversity wild cereals biological conservation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, S. & S.D. Tanksley, 1993. Comparative linkage maps of the rice and maize genomes. Proc. Natl. Acad. Sci. USA 90: 7980–7984.Google Scholar
  2. Alpert, K.B. & S.D. Tanksley, 1996. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato. PNAS 93: 15503–15507.Google Scholar
  3. Anikster, Y. & I. Noy-Meir, 1991. Studies of a wild wheat population at Ammiad, Israel. The wild-wheat field laboratory at Ammiad. Isr. J. Bot. 40: 351–362.Google Scholar
  4. Anikster, Y., A. Eshel, S. Ezrati & A. Horovitz., 1991. Patterns of phenotypic variation in wild tetraploid wheat at Ammiad. Isr. J. Bot. 40: 397–418.Google Scholar
  5. Anikster, Y., M. Feldman & A. Horovitz., 1997. The Ammiad experiment. In: N. Maxted, B.V. FordLloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall. pp. 239–253.Google Scholar
  6. Atlas of Israel., 1970. Survey of Israel. Jerusalem: Ministry of Labour. Elsevier, Amsterdam.Google Scholar
  7. Avivi, L., 1978. High grain protein content in wild tetraploid wheat, Triticum dicoccoides Korn. Proc. 5th Int. Wheat Genet. Symp., New Delhi, pp. 372–380.Google Scholar
  8. Baum, B.R., E. Nevo, D.A. Johnson & A. Beiles., 1997. Genetic diversity in wild barley (Hordeum spontaneum C. Koch) in the Near East: a molecular analysis using Random Amplified Polymorphic DNA (RAPD) markers. Genet. Res. Crop Evol. 44: 147–157.Google Scholar
  9. Brown, A.H.D. & D.J. Schoen., 1992. Plant population genetic structure and biological conservation. In: O.T. Sandlund, O.T., K. Hindar & A.H.D. Brown (Eds), Conservation of Biodiversity for Sustainable Development. Scandinavian Univ. Press, pp. 88–104, Oslo.Google Scholar
  10. Brown, A.H.D. & D.J. Schoen., 1994. Optimal sampling strategies for core collections of plant genetic resources. In: Loeschcke, V., J. Tomiuk & S.K. Jain (Eds), Conservation Genetics. Birkhauser Verlag, Basel.Google Scholar
  11. Brown, A.H.D., D. Zohary & E. Nevo., 1978. Outcrossing rates and heterozygosity in natural populations of Hordeum spontaneum Koch in Israel. Heredity 41: 49–62.Google Scholar
  12. Brown, A.H.D., M.W. Feldman & E. Nevo., 1980. Multilocus structure of natural populations of Hordeum spontaneum. Genetics 96: 523–536.Google Scholar
  13. Brown, A.H.D., O.H. Frankel, D.R. Marshall & J.T. Williams (Eds), 1989. The Use of Plant Genetic Resources. Cambridge University Press.Google Scholar
  14. Brown, H.D., M.T. Clegg, A.L. Kahler & B.S. Weir (Eds), 1990. Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Assoc. Inc., Sunderland, Massachusetts.Google Scholar
  15. Carver, B.F. & E. Nevo., 1990. Genetic diversity of photosynthetic characters in native populations of Triticum dicoccoides. Photosynth. Res. 25: 119–128.Google Scholar
  16. Chalmers, K.J., R. Waugh, J. Waters, B.P. Forster, E. Nevo & W. Powell., 1992. Grain isozyme and ribosomal DNA variability in Hordeum spontaneum populations from Israel. Theor. Appl. Genet. 84: 313–322.Google Scholar
  17. Dawson, I.K., K.J. Chalmers, R. Waugh & W. Powell., 1993. Detection and analysis of genetic variation in Hordeum spontaneum populations from Israel using RAPD markers. Mol. Ecol. 2: 151–159.Google Scholar
  18. Dinnor, A., 1974. Role of wild and cultivated plants in the epidemiology of plant diseases in Israel. Ann. Rev. Phytopth., 12: 413–436.Google Scholar
  19. Dinoor, A., N. Eshed, R. Ecker, Z. GerechterAmitai, Z. Solel, J. Manisterski & Y. Anikster., 1991. Fungal diseases of wild tetraploid wheat in a natural stand in northern Israel. Isr. J. Bot. 40: 481–500.Google Scholar
  20. Ehrlich, P.R. & E.O. Wilson., 1991. Biodiversity Studies: Science and Policy. Science 253: 758–762.Google Scholar
  21. Fahima, T., M. Roder, A. Grama & E. Nevo., 1998. Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor. Appl. Genet. 96: 187–195.Google Scholar
  22. Feldman, M., 1979. Genetic resources of wild wheats and their use in breeding. Monogr. Genet. Agrar. 4: 9–26.Google Scholar
  23. Feldman, M. & E.R. Sears., 1981. The wild gene resources of wheat. Sci. Amer. 244: 102–112.Google Scholar
  24. Felsenburg, T., A.A. Levy, G. Galili & M. Feldman., 1991. Polymorphism of high-molecular-weight glutenins in wild tetraploid wheat: spatial and temporal variation in a native site. Isr. J. Bot. 40: 451–480.Google Scholar
  25. Fiedler, P.L. & S.K. Jain (editors)., 1992. Conservation Biology: The Theory and Practice of Nature Conservation Preservation and Management. Chapman and Hall, New York and London.Google Scholar
  26. FordLloyd, B.V. & N. Maxted., 1997. Genetic conservation information management. In: Maxted, N., B.V. FordLloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall; pp., 176–191.Google Scholar
  27. Forster, B.P., C.N. Law, E. Nevo & W. Powell., 1990. Genetic strategies for improving the salt tolerance of wheat and barley. In Proceedings of the Intern. Symp. on Molecular and Genetic Approaches to Plant Stress. New Delhi, India; T31: 1–3.Google Scholar
  28. Forster, B.P., L.L. Handley, H. Pakniyat, C.B. Scrimgeour, E. Nevo & J.A. Raven., 1994a. Genetic and ecological factors controlling carbon isotope discrimination in barley. Aspec. Appl. Biol. 38: 139–143.Google Scholar
  29. Forster, B.P., H. Pakniyat, M. Macaulay, W. Matheson, M.S. Phillips, W.T.B. Thomas & W. Powell., 1994b. Variation in leaf sodium content of Hordeum vulgare (Barley) cultivar Maythorpe and its derived mutant cv. Golden Primise. Heredity 73: 249–253.Google Scholar
  30. Forster, B.P., H. Pakniyat, C.G. Simpson, & L.L. Handley., 1995. Genetic control of salt tolerance in barley. In Induced Mutations and Molecular Techniques for Crop Improvement. Vienna, Austria. IAEA/FAO; 347–353.Google Scholar
  31. Frankel, O.H. & E. Bennett., 1970. Genetic Resources in Plants Their Exploration and Conservation. Blackwell, Oxford.Google Scholar
  32. Frankel, O.H. & J.G. Hawkes., 1975. Crop Genetic Resources for Today and Tomorrow. Cambridge Univ. Press, Cambridge, England.Google Scholar
  33. Frankel, O.H. & M.E. Soule'., 1981. Conservation and Evolution. Cambridge Univ. Pres, Cambridge, England.Google Scholar
  34. Frankel, O.H., A.H.D. Brown & J.J Burdon., 1995. The Conservation of Plant Biodiversity. Cambridge University Press, Cambridge.Google Scholar
  35. Gerechter-Amitai, Z.K. & R.W. Stubbs., 1970. A valuable source of yellow rust resistance in Israeli populations of wild emmer, Triticum dicoccoides Korn. Euphytica 19: 12–21.Google Scholar
  36. Gerechter-Amitai, Z.K., C.H. van Silfhout & A. Grama., 1989. Yr15a new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G25. Euphytica 43: 187–190.Google Scholar
  37. Gillman, M., 1997. Plant population ecology. In Maxted, N., B.V. FordLloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall; pp., 114–131.Google Scholar
  38. Grama, A., Z.KJ. Gerechter-Amitai & A. Blum., 1983. Wild emmer as donor of genes for resistance to stripe rust and for high protein content. Proc. 6th Int. Wheat Genet. Symp. Kyoto, Japan: 187– 192.Google Scholar
  39. Golenberg, E.M., 1986. Linkage relationships in wild emmer wheat, Triticum dicoccoides. Genetics 114: 1023–1031.Google Scholar
  40. Golenberg, E.M., 1987. Estimation of gene flow and genetic neighborhood size by indirect methods in a selfing annual, Triticum dicoccoides. Evolution 41: 1326–1334.Google Scholar
  41. Golenberg, E.M. & E. Nevo., 1987. Multilocus differentiation and population structure in a selfer, wild emmer wheat, Triticum dicoccoides. Heredity 58: 951–956.Google Scholar
  42. Handley, L.L., E. Nevo, J.A. Raven, R. Martinez-Carrasco, C.M. Scrimgeour, H. Pakniyat & B.P. Forster., 1994. Chromosome 4 controls potential water use efficiency (delta 13C) in barley. J. Exper. Bot. 45: 1661–1663.Google Scholar
  43. Handley, L.L., D.R. Robinson, C.M. Scrimgeour, B.P. Forster, R.P. Ellis & E. Nevo., 1997a. Correlating molecular markers with physiological expression in Hordeum, a developing approach using stable isotopes. New Phytologist 137: 159–163.Google Scholar
  44. Handley, L.L., D. Robinson, B.P. Forster, R.P. Ellis, C.M. Scrimgeour, D.C. Gordon, E. Nevo & J.A. Raven. 1997b. Shoot delta 15N correlates with genotype and salt stress in barley. Planta 201: 100–102.Google Scholar
  45. Harlan, J.R., 1975. Our vanishing genetic resources. Science 188: 618–621.Google Scholar
  46. Harlan, J. & D. Zohary., 1966. Distribution of wild wheats and barley. Science 153: 1074–1080.Google Scholar
  47. Hawkes, J.G., 1983. The Diversity of Crop Plants. Harvard University Press, Cambridge.Google Scholar
  48. Hawkes, J.G., 1991. International workshop in dynamic in situ conservation of wild relatives ofmajor cultivated plants: Summary of final discussion and recommendations. Isr. J. Bot. 40: 529–536.Google Scholar
  49. Hawkes, J.G., N. Maxted & D. Zohary., 1997. Reserve design. In: Maxted, N., B.V. FordLloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall; pp., 132–143.Google Scholar
  50. Hawksworth, D.L. (Ed) 1995. Biodiversity, Measurement and Estimation. Chapman & Hall, London.Google Scholar
  51. Holden, J., J. Peacock & T. Williams., 1993. Genes, Crops, and the Environment. Cambridge University Press, Cambridge.Google Scholar
  52. Horovitz, A. & M. Feldman., 1991. Evaluation of the wild-wheat study at Ammiad. Isr. J. Bot. 40: 501–508.Google Scholar
  53. Hunger, R.M., J.L. Sherwood, R.E. Pennington, B.F. Carver & E. Nevo., 1992. Reaction of native populations of Triticum dicoccoides to wheat soilborne mosaic. (Abstract). In Biological & Cultural Tests for Control of Plant Diseas. Vol. 7. APS Press.Google Scholar
  54. IBPGR., 1985. Ecogeographical Surveying and In Situ Conservation of Crop Relative. IBPGR Secretariat, Rome.Google Scholar
  55. Israel J. Bot. 1991. International Workshop on Dynamic in situ Conservation of Wild Relatives of Major Cultivated Plants. 2–5 April, 1991. Jerusalem, Israel. Abstracts of invited papers. Isr. J. Bot. 40: 509–519.Google Scholar
  56. Jana, S. & E. Nevo., 1991. Variation in response to infection with Erysiphe graminis hordei andPuccinia hordei in somewild barley populations in a centre of diversity. Euphytica 57: 133–140.Google Scholar
  57. Jaradat, A.A., 1989. Ecotypes and genetic divergence among sympatrically distributed populations of Hordeum vulgare and Hordeum spontaneum from the xeric region of Jordan. Theor. Appl. Genet. 89: 857–862.Google Scholar
  58. Jaradat, A.A., 1997a. Wild emmer wheat in Jordan: I. ecotypes and phenotypic variation. Isr. J. Pl. Sci. 45: 31–37.Google Scholar
  59. Jaradat, A.A., 1997b. Wild emmer wheat in Jordan: II. genetic distances between and within populations. Isr. J. Pl. Sci. 45: 39–44.Google Scholar
  60. Jaradat, A.A., 1997c. Wild emmer wheat in Jordan: III. a core collection. Isr. J. Pl. Sci. 45: 45–51.Google Scholar
  61. Jaradat, A.A. & B.O. Humeid., 1990. Morphological variation in Triticum dicoccoides from Jordan. In: Srvastava J.P. & A.B. Damania (Eds),Wheat genetic resources: Meeting diverse needs, pp. 215–222. Wily-Chayce, Chichester, UK.Google Scholar
  62. Joppa, L.R., E. Nevo & A. Beiles., 1995. Chromosome translocations in wild populations of tetraploid emmer wheat in Israel and Turkey. Theor. Appl. Genet. 91: 713–719.Google Scholar
  63. Kahler, A.L., R.W. Allard, M. Krzakowa, C.R. Wehrhahn & E. Nevo., 1980. Associations between isozyme phenotypes and environment in the slender wild oat (Avena barbata) in Israel. Theor. Appl. Genet. 56: 31–47.Google Scholar
  64. Kashi, Y., D. King & M. Soller., 1997. Simple sequence repeats as a source of quantitative genetic variation. Trends in Genetics 13: 74–78.Google Scholar
  65. Keesing, V. & S.D. Wratten., 1997. Integrating plant and insect conservation. In: Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall, pp. 220–238.Google Scholar
  66. Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.Google Scholar
  67. King, D.G., M. Soller & Y. Kashi., 1997. Evolutionary tuning knobs. Endevour 21: 36–40.Google Scholar
  68. Korol, A.B., I.A. Preygel & S.I. Preygel., 1994. Recombination Variability and Evolution. Chapman and Hall, London.Google Scholar
  69. Krugman, T., O. Levy, J.W. Snape, B. Rubin, A. Korol & E. Nevo., 1997. Comparative RFLP mapping of the chlorotoluron resistance gene (Su1) in cultivated wheat (Triticum aestivum) and wild wheat (Triticum dicoccoides). Theor. Appl. Genet. 94: 46–51.Google Scholar
  70. Lander, E.S., 1996. The new genomics: Global views of biology. Science 274: 536–539.Google Scholar
  71. Lawrence, M.J. & D.F. Marshall., 1997. Plant population genetics. In: Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall, pp. 99–113.Google Scholar
  72. Li, Y.C., T. Fahima, G.L. Sun, A. Beiles, A. Korol & E. Nevo., 1998. Molecular analysis of DNA polymorphism: a microgeographical edaphic differentiation in wild emmer wheat, Triticum dicoccoides. (Submitted).Google Scholar
  73. Loeschcke, V., J. Tomiuk & S.K. Jain., 1994. Conservation Genetics. Birkhauser Verlag, Basel.Google Scholar
  74. Maxted, N. & L. Guarino., 1997. Ecogeographic surveys In: Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall, pp. 69–87.Google Scholar
  75. Maxted, N. & J.G. Hawkes., 1997. Selection of target taxa. In: Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall, pp. 43– 68.Google Scholar
  76. Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes (Eds) 1997a. Plant Genetic Conservation. The in situ Approach. Chapman and Hall, London.Google Scholar
  77. Maxted, N., B.V. Ford-Lloyd & J.C. Hawkes., 1997b. Complementary conservation strategies. In: Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall, pp., 15–39.Google Scholar
  78. Maxted, N., L. Guarino & M.E. Dulloo., 1997c. Management and monitoring. In: Maxted, N., B.V. Ford–Lloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. Chapman and Hall, pp., 144–159.Google Scholar
  79. Mitton, J.B., 1994. Molecular approaches to population biology. Ann. Rev. Ecol. Syst. 25: 45–69.Google Scholar
  80. Moseman, J.G., E. Nevo & D. Zohary., 1983. Resistance of Hordeum spontaneum collected in Israel to infection with Erysiphe graminis hordei. Crop. Sci. 23: 1115–1119.Google Scholar
  81. Moseman, J.G., M.A. ElMorshidy, E. Nevo & D. Zohary., 1984. Resistance of Triticum dicoccoides to infection with Erysiphe graminis tritici. Euphytica 33: 41–47.Google Scholar
  82. Moseman, J.G., E. Nevo, Z.K. Gerechter-Amitai, M.A. ElMorshidy & D. Zohary., 1985. Resistance of Triticum dicoccoides collected in Israel to infection with Puccinia recondita tritici. Crop. Sci. 25: 262–265.Google Scholar
  83. Moseman, J.G., E. Nevo & M.A. El-Morshidy., 1990. Reactions of Hordeum spontaneum to infection with 2 cultures of Puccinia hordei from Israel and the United States. Euphytica 49: 169–176.Google Scholar
  84. Nevo, E., 1978. Genetic variation in natural populations: Patterns and theory. Theor. Pop. Biol., 13: 121–177.Google Scholar
  85. Nevo, E., 1983a. Genetic resources of wild emmer wheat: Structure, evolution and application in breeding. In: Sakamoto, S., (Ed), Proc. 6th Intl. Wheat Genetics Symp.. pp. 421–431, Kyoto Univ. Kyoto, Japan.Google Scholar
  86. Nevo, E., 1983b. Population genetics and ecology: The interface. In: D.S. Bendall (Ed). Evolution fromMolecules toMen. Cambridge Univ. Press, Cambridge; 287–321.Google Scholar
  87. Nevo, E., 1983c. Adaptive significance of protein variation. In: G.S. Oxford & D. Rollinson (Eds), Systematic Association. Special Volume 24 Protein Polymorphism: Adaptive and Taxonomic Significance. Academic Press, New York; 239–282.Google Scholar
  88. Nevo, E., 1986a. Pollution and genetic evolution in marine organisms: Theory and Practice. In: Dubinsky Z. & Y. Steinberger (Eds), Environmental Quality and Ecosystem Stability Vol. IIIA/B pp. 841–848K, Bar Ilan Univ. Press, Ramat Gan.Google Scholar
  89. Nevo, E., 1986b. Genetic resources of wild cereals and crop improvement: Israel, a natural laboratory. Isr. J. Bot. 35: 255–278.Google Scholar
  90. Nevo, E., 1987. Plant genetic resources: Prediction by isozyme markers and ecology. In: Rattazi, M.C., J.G. Scandalios & G.S. Whitt (Eds) Isozymes, pp. 247–267, Current Topics in Biological Research., 16.Google Scholar
  91. Nevo, E., 1988a. Genetic resources of wild emmer wheat revisited: genetic evolution, conservation and utilization. In: Miller T.E. & R.M.D. Koebner (Eds), Proceedings 7th Inter. Wheat Genetics Symp, pp., 121–126, Inst. of Plant Sci. Res. Cambridge, England.Google Scholar
  92. Nevo, E., 1988b. Genetic diversity in nature: Patterns and theory. Evol. Biol. 23: 217–247.Google Scholar
  93. Nevo, E., 1990. Molecular Evolutionary Genetics of isozymes: Patterns, theory and application. In Isozymes: Structure, Function and Use in Biology and Medicine. WileyLiss, Inc. 701–742.Google Scholar
  94. Nevo, E., 1992. Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. In: Shewry P.R., (Ed), Barley: Genetics, biochemistry, molecular biology and biotechnology, pp., 19–43, CAB Internat.Google Scholar
  95. Nevo, E., 1995a. Genetic resources of wild emmer, Triticum dicoccoides for wheat improvement: News and Views. Proc. Intern. 8th Wheat Genet. Symp., 20–25 July, 1993. Beijing. pp. 79–87. China Agricultural Scientech Press, Beijing.Google Scholar
  96. Nevo, E., 1995b. Asian, African and European biota meet at 'Evolution Canyon', Israel: Local tests of global biodiversity and genetic diversity patterns. Proc. Roy. Soc. Lond. B262: 149–155.Google Scholar
  97. Nevo, E., 1997. Evolution in action across phylogeny caused by microclimatic stresses at 'Evolution Canyon'. Theor. Pop. Biol. 52: 231–243.Google Scholar
  98. Nevo, E., 1998a. 'Evolution Canyon': A natural microscale model of evolution in action. Plant Genetics Newsletter, Botanical Soc. of Amer. (in press).Google Scholar
  99. Nevo, E., 1998b. Molecular evolution and ecological stress at global, regional and local scales: The Israeli perspective. Jour. Exp. Zool. (in press).Google Scholar
  100. Nevo, E. & A. Beiles., 1988. Genetic parallelism of protein polymorphismin nature: Ecological test of the neutral theory ofmolecular evolution. Biol. J. Linn. Soc. 35: 229–245.Google Scholar
  101. Nevo, E. & A. Beiles., 1989. Genetic diversity of wild emmer wheat in Israel and Turkey: Structure, evolution and application in breeding. Theor. Appl. Genet. 77: 421–455.Google Scholar
  102. Nevo, E. & A. Beiles., 1991. Genetic diversity and ecological heterogeneity in amphibian evolution. Copia 1991: 565–592.Google Scholar
  103. Nevo, E. & A. Beiles., 1992. Aminoacid resources in the wild progenitor of wheats, Triticum dicoccoides, in Israel: Polymorphisms and predictability by ecology and isozymes. Pl. Breed. 108: 190–201.Google Scholar
  104. Nevo, E. & P.I. Payne., 1987. Wheat storage proteins: Diversity of HMWglutenin subunits in wild emmer from Israel. I. Geographical patterns and ecological predictability. Theor. Appl. Genet. 74: 827–836.Google Scholar
  105. Nevo, E., D. Zohary, A.H.D. Brown and M. Haber., 1979. Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel. Evolution 33: 815–833.Google Scholar
  106. Nevo, E., A.H.D. Brown, D. Zohary, N. Storch & A. Beiles. 1981. Microgeographic edaphic differentiation in allozyme polymorphisms of wild barley (Hordeum spontaneum, Poaceae). Pl. Syst. Evol., 138: 287–292.Google Scholar
  107. Nevo, E., E. Golenberg, A. Beiles, A.H.D. Brown & D. Zohary., 1982. Genetic diversity and environmental associations of wild wheat, Triticum dicoccoides, in Israel. Theor. Appl. Genet. 62: 241–254.Google Scholar
  108. Nevo, E., A. Beiles, N. Storch, H. Doll & B. Andersen. 1983. Microgeographic edaphic differentiation in hordein polymorphisms of wild barley. Theor. Appl. Genet. 64: 123–132.Google Scholar
  109. Nevo, E., A. Beiles & R. Ben-Shlomo., 1984a. The evolutionary significance of genetic diversity: Ecological, demographic and life history correlates. Lecture Notes in Biomathematics 53: 13– 213.Google Scholar
  110. Nevo, E., A. Beiles, Y. Gutterman, N. Storch & D. Kaplan. 1984b. Genetic resources of wild cereals in Israel and vicinity: I. Phenotypic variation within and between populations of wild wheat, Triticum dicoccoides. Euphytica 33: 717–735.Google Scholar
  111. Nevo, E., A. Beiles, Y. Gutterman, N. Storch & D. Kaplan. 1984c. Genetic resources of wild cereals in Israel and vicinity. II. Phenotypic variation within and between populations of wild barley, Hordeum spontaneum. Euphytica 33: 737–756.Google Scholar
  112. Nevo, E., J.G. Moseman, A. Beiles & D. Zohary., 1985. Patterns of resistance of Israeli wild emmer wheat to pathogens. I. Predictive method by ecology and alozyme genotypes for powdery mildew and leaf rust. Genetica 67: 209–222.Google Scholar
  113. Nevo, E., A. Beiles & D. Zohary., 1986a. Genetic resources of wild barley in the Near East: Structure, evolution and application in breeding. Biol. J. Linn. Soc. 27: 355–380.Google Scholar
  114. Nevo, E., A. Beiles, D. Kaplan, N. Storch & D. Zohary. 1986b. Genetic diversity and environmental associations of wild barley, Hordeum vulgare (Poaceae), in Iran. Plant Syst. & Evol., 153: 141–164.Google Scholar
  115. Nevo, E., D. Zohary, A. Beiles, D. Kaplan & N. Storch. 1986c. Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Turkey. Genetica 68: 203–213.Google Scholar
  116. Nevo, E., A. Grama, A. Beiles & E.M. Golenberg., 1986d. Resources of high-protein genotypes in wild wheat, Triticum dicoccoides in Israel. Predictive method by ecology and allozyme markers. Genetica 68: 215–227.Google Scholar
  117. Nevo, E., A. Beiles, D. Kaplan, E.M. Golenberg, L. Olsvig-Whittaker & Z. Naveh., 1986e. Natural selection of allozyme polymorphisms: A microsite test revealing ecological genetic differentiation in wild barley. Evolution 40: 13–20.Google Scholar
  118. Nevo, E. Z. Gerechter-Amitai, A. Beiles & E.M. Golenberg. 1986f. Resistance of wild wheat to stripe rust: Predictive method by ecology and allozyme genotypes. Pl. Syst. Evol., 153: 13–30.Google Scholar
  119. Nevo, E., A. Beiles & D. Kaplan., 1988a. Genetic diversity and environmental associations of wild emmer wheat in Turkey. Heredity 61: 31–45.Google Scholar
  120. Nevo, E., A. Beiles & T. Krugman., 1988b. Natural selection of allozyme polymorphisms: A microgeographic climatic differentiation in wild emmer wheat, Triticum dicoccoides. Theor. Appl. Genet. 75: 529–538.Google Scholar
  121. Nevo, E., A. Beiles & T. Krugman., 1988c. Natural selection of allozyme polymorphisms: microgeographic differentiation by edaphic, topographical and temporal factors in wild emmerwheat Triticum dicoccoides in Israel. Theor. Appl. Genet. 76: 737–752.Google Scholar
  122. Nevo, E., M.G. Filippucci & A. Beiles., 1990. Genetic diversity and its ecological correlates in nature: Comparison between subterranean, fossorial and aboveground small mammals. In: Nevo E. & O.A. Reig (Eds), Evolution of Subterranean Mammals at the Organismal and Molecular Levels, pp. 347–366, Alan R. Liss Inc., New York.Google Scholar
  123. Nevo, E., I. Noy-Meir, A. Beiles, T. Krugman & M. Agami. 1991a. Natural selection of allozyme polymorphisms: microgeographical spatial and temporal ecological differentiations in wild emmer wheat. Isr. J. Bot. 40: 419–449.Google Scholar
  124. Nevo, E. Z. Gerechter-Amitai & A. Beiles., 1991b. Resistance of wild emmer wheat to stem rust: Ecological, pathological and allozyme assocations. Euphytica 53:121–130.Google Scholar
  125. Nevo, E., B.F. Carver & A. Beiles., 1991c. Photosynthetic performance in wild emmer wheat Triticum dicoccoides: Ecological and genetic predictability. Theor. Appl. Genet. 81: 445–460.Google Scholar
  126. Nevo, E., J. Gorham & A. Beiles., 1992a.Variation for 22Nauptake in wild emmer wheat, Triticum dicoccoides in Israel: Salt tolerance resources for wheat improvement. J. Exp. Bot. 43: 511–518.Google Scholar
  127. Nevo, E., J.W. Snape, B. Lavie & A. Beiles., 1992b. Herbicide response polymorphisms in wild emmer wheat: ecological and isozyme correlations. Theor. Appl. Genet. 84: 209–216.Google Scholar
  128. Nevo, E., T. Krugman & A. Beiles., 1993. Genetic resources for salt tolerance in the wild progenitors of wheat (Triticum dicoccoides) and barley (Hordeum spontaneum) in Israel. Pl. Breed., 110: 338–341.Google Scholar
  129. Nevo, E., T. Krugman & A. Beiles., 1994. Edaphic natural selection of allozyme polymorphisms in Aegilops peregina at a Galilee microsite in Israel. Heredity 72: 109–112.Google Scholar
  130. Nevo, E., M.A. Pagnotta, A. Beiles & E. Porceddue., 1995. Wheat storage proteins: glutenin DNA diversity in wild emmer wheat, Triticum dicoccoides, in Israel and Turkey. III. Environmental correlates and allozymic associations. Theor. Appl. Genet. 91: 415–420.Google Scholar
  131. Nevo, E., R. Ben-Shlomo, A. Beiles, Y. Ronin, S. Blum & J. Hillel., 1996. DNA fingerprinting reveals ecological correlations and genetic parallelism of allozyme and mitochondrial DNA diversities in the actively speciating blind mole rats in Israel. In: Roger, S., S. Holmes & H.A. Lim (Eds), Gene Families: Structure, Function, Genetics and Evolution, pp. 55–70, World Publ.Google Scholar
  132. Nevo, E., I. Apelbaum-Elkaher, J. Garty & A. Beiles., 1997a. Natural selection causes microscale allozyme diversity in wild barley and a lichen at 'Evolution Canyon', Mt. Carmel, Israel. Heredity 78: 373–382.Google Scholar
  133. Nevo, E. V. Kirzhner, A. Beiles & A. Korol., 1997b. Selection versus random drift: longterm polymorphism persistence in small populations (evidence and modelling). Phil. Trans. R. Soc. Lond. B 352: 381–389.Google Scholar
  134. Nevo, E., B. Baum, A. Beiles & D.A. Johnson., 1998. Ecological correlates of RAPD DNA diversity of wild barley, Hordeum spontaneum in the Fertile Crescent. Genet. Res. Crop Evol. 45: 151–159.Google Scholar
  135. Newbury, H.J. & B.V. Ford-Lloyd., 1997. Estimation of genetic diversity. In: Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach, pp., 192–206, Chapman and Hall.Google Scholar
  136. Noy-Meir, I., M. Agami & Y. Anikster., 1991a. Changes in the population density of wild emmer wheat (Triticum turgidum var. dicoccoides) in a Mediterranean grassland. Isr. J. Bot. 40: 385–396.Google Scholar
  137. Noy-Meir, I., M. Agami, E. Cohen & Y. Anikster., 1991b. Floristic and ecological differentiation of habitats within a wild wheat population at Ammiad. Isr. J. Bot. 40: 363–384.Google Scholar
  138. Owuor, E., T. Fahima, A. Beiles, A. Korol & E. Nevo., 1997. Population genetic response to microsite ecological stress in wild barley, Hordeum spontaneum. Molec. Ecol. 6: 1177–1187.Google Scholar
  139. Pagnotta, M.A., E. Nevo, A. Beiles & E. Porceddue., 1995. Wheat storage proteins: glutenin diversity in wild emmer, Triticum dicoccoides, in Israel and Turkey. II. DNA diversity detected by PCR. Theor. Appl. Genet. 91: 409–414.Google Scholar
  140. Pakniyat, H., W. Powell, E. Baird, L.L. Handley, D. Robinson, C.M. Scrimgeour, E. Nevo, C.A. Hackett, P.D.S. Caligari & B.P. Forster., 1997. AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome 40: 332–341.Google Scholar
  141. Paterson, A.H., 1996. Genome Mapping in Plants. Landes Biomedical Publishing/Academic Press.Google Scholar
  142. Plucknett, D.L., N.H.J. Smith, J.T. Williams & N.M. Anishetty., 1987. Gene Banks and the World's Food. Princeton University Press, Princeton.Google Scholar
  143. Prance, G.T., 1997. The conservation of botanical diversity. In: Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach, pp., 1–4, Chapman and Hall.Google Scholar
  144. Qualset, CLO., A.B. Damania, A.C.A. Zanatta & S.B. Brush. 1997. Locally based crop plant conservation. In: Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes (Eds), Plant Genetic Conservation. The in situ Approach. pp., 160–175, Chapman and Hall.Google Scholar
  145. Saghai-Maroof, M.A., R.M. Biyashev, G.P. Yang, Q. Zhang, & R.W. Allard., 1994. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc. Natl. Acad. Sci. USA 91:5466–5470.Google Scholar
  146. Sandlund, O.T., K. Hindar & A.H.D. Brown., 1992. Conservation of Biodiversity for Sustainable Development. Scandinavian Univ. Press, Oslo.Google Scholar
  147. Segal, A., J. Manisterski, G. Fischbeck & I. Wahl., 1980. How plant populations defend themselves in natural ecosystems. In: Horsfall J.G. & E.B. Cowling (Eds), Plant Disease: AnAdvanced Treatise, Vol. 5 pp. 76–102, Academic Press. New York.Google Scholar
  148. Segal, A., K.H. Dorr, G. Fischbeck, D. Zohary & I. Wahl. 1987. Genotypic composition and mildew resistance in natural populations of wild barley, Hordeum spontaneum. Z. Pflanzenzuchtung 99: 118–127.Google Scholar
  149. Snape, J.W., E. Nevo, B.B. Parker, D. Leckie & A. Morgunov. 1991a. Herbicide response polymorphisms in wild populations of emmer wheat. Heredity 66: 251–257.Google Scholar
  150. Snape, J.W., D. Leckie, B.B. Parker & E. Nevo., 1991b. The genetical analysis and exploitation of differential responses to Herbicides in crop species. In: Casley, J.C., G.W. Cussans & R.K. Atkin (Eds), Herbicide Resistance in Weeds and Crops, pp. 305–317, Butterworth-Heinemann, Oxford.Google Scholar
  151. Soule', M.E. editor., 1986. Conservation Biology: The Science of Scarcity and Diversity. Sinauer Asso. Inc., Publishers, Sunderland, MA.Google Scholar
  152. Soule', M.E., 1987. Viable Populations for Conservation. Cambridge Univ. Press, Cambridge, England.Google Scholar
  153. Sun, G., T. Fahima, A. Korol, T. Turpeinen, A. Grama, Y. Ronin & E. Nevo., 1997. Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor. Appl. Genet. 95: 622–628.Google Scholar
  154. Tanksley, S.D. & S.R. McCouch., 1997. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277: 1063–1066.Google Scholar
  155. Valdes, B., V.H. Heywood, F.M. Raimondo & D. Zohary (eds.) 1997. Proceedings of theWorkshop on 'Conservation of theWild Relatives of European Cultivated Plants'. Azienda Foreste Demaniali della Regione Siciliana.Google Scholar
  156. Weining, S. & R.J. Henry., 1995. Molecular analysis of the DNA polymorphism of wild barley (Hordeum spontaneum) germplasm using the polymerase chain reaction. Genet. Res. Crop Evol. 42: 273–281.Google Scholar
  157. Williams, J.T., 1997. Technical and political factors constraining reserve placement. In: Maxted, N., B.V. Ford-Lloyd & J.G. Hawkes, (Eds), Plant Genetic Conservation. The in situ Approach, pp. 88–98, Chapman and Hall.Google Scholar
  158. Wilson, E.O., 1989. Threats to biodiversity. Scient. Amer. September 1989, pp. 60–66.Google Scholar
  159. Wilson, E.O., 1992. The Diversity of Life. Harvard Univ. Press, Cambridge, MA.Google Scholar
  160. Wilson, E.O. & F.M. Petter., 1988. Biodiversity. Natl. Academy Press, Washington, DC.Google Scholar
  161. Zohary, D., 1970. Center of diversity and centers of origin. In O.H. Frankel & E. Benett editors Genetic Resources in Plants their Exploration and Conservation. Blackwell, Oxford; 33–42.Google Scholar
  162. Zohary, D. & M. Hopf., 1988. Domestication of plants in the Old World. Oxford Science Publications, Oxford.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Eviatar Nevo
    • 1
  1. 1.Institute of EvolutionUniversity of HaifaHaifaIsrael

Personalised recommendations