Journal of Sol-Gel Science and Technology

, Volume 13, Issue 1–3, pp 685–689

Synthesis and Optical Properties of Mn2+-Doped ZnS Nanoparticles in Solutions and Coatings

  • U. Sohling
  • G. Jung
  • D.U. Saenger
  • S. Lu
  • B. Kutsch
  • M. Mennig
Article

Abstract

Mn2+-doped ZnS nanoparticles with different Mn-doping concentrations stabilized by hydroxypropyl cellulose (HPC) have been synthesized in ethanolic solutions and coatings. Their optical and structural properties have been characterized by means of UV-vis spectroscopy, luminescence spectroscopy, high resolution transmission electron microscopy (HRTEM) and small angle X-ray scattering (SAXS). Solutions and coatings exhibit a strong luminescence at 590 nm when excited with UV light showing that Mn2+ is incorporated into the ZnS nanoparticles. The highest luminescence intensity is obtained with an Mn2+ concentration of 2 mol%. HRTEM and SAXS investigations show that the particles are crystalline and are 3 ± 0.5 nm in size. Irradiation of the coatings with UV light leads to a photochemical oxidation of the particles, as shown by the decreasing absorption of the coating with irradiation time and a blue shift of the absorption maximum. Furthermore, the luminescence intensity first strongly increases and then decreases completely with UV-irradiation time. Both phenomena can be explained by the photochemical oxidation of the particles.

zinc sulfide nanoparticles absorption spectroscopy luminescence spectroscopy coatings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Brus; Appl. Phys. A53, 465 (1991).Google Scholar
  2. 2.
    V.L. Colvin, M.C. Schlamp, and A.P. Alivisatos, Nature 370, 354 (1994).Google Scholar
  3. 3.
    C.B. Murray, D.J. Norris, and G. Bawendi, J. Amer. Chem. Soc. 115, 8706 (1993).Google Scholar
  4. 4.
    A. Henglein and M. Gutierrez, Ber. Bunsenges. Phys. Chem. 87, 852 (1983).Google Scholar
  5. 5.
    H. Weller, U. Koch, M. Gutierrez, and A. Henglein, Ber. Bunsenges. Phys. Chem. 88, 649 (1984).Google Scholar
  6. 6.
    R.N. Bhargava, D. Gallagher, and T. Welker, J. Lumin. 60/61, 275 (1994).Google Scholar
  7. 7.
    R.N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994).PubMedGoogle Scholar
  8. 8.
    D. Gallagher, W.E. Heady, J.M. Racz and R.N. Bhargava, J. Cryst. Growth 138, 970 (1994).Google Scholar
  9. 9.
    Y.L. Soo, Z.H. Ming, S.W. Huang, Y.H. Kao, R.N. Bhargava, and D. Gallager, Phys. Rev. B 50, 7602 (1994).Google Scholar
  10. 10.
    K. Sooklal, B.S. Cullum, S.M. Angel, and C.J. Murphy, J. Phys. Chem. 100, 4551 (1996).Google Scholar
  11. 11.
    I. Yu, T. Isobe, and M. Senna, J. Phys. Chem. Solids 57, 373 (1996).Google Scholar
  12. 12.
    A. Siggel, Riedel de Haen AG, private communication.Google Scholar
  13. 13.
    R. Bhargava, D. Gallager, and J. Racz; European Patent 0 622 439 A1; publication date 02.11.1994.Google Scholar
  14. 14.
    C. Jin, J. Yu, L. Sun, K. Dou, S. Hou, J. Zhao, Y. Chen, S. Huang, and J. Lumin. 66/67, 315 (1996).Google Scholar
  15. 15.
    B. Kutsch, O. Lyon, M. Schmitt, M. Menning, and H. Schmidt, J. Appl. Cryst. 30, 948 (1997).Google Scholar
  16. 16.
    B. Kutsch, O. Lyon, M. Schmitt, M. Mennig, and H. Schmidt, J. Non-Cryst. Solids 217, 143 (1997).Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • U. Sohling
    • 1
  • G. Jung
    • 1
  • D.U. Saenger
    • 1
  • S. Lu
    • 1
  • B. Kutsch
    • 1
  • M. Mennig
    • 1
  1. 1.Institut für Neue MaterialienSaarbrückenGermany

Personalised recommendations