On the nucleation and growth of voids at high strain-rates

  • J. Belak


The nucleation and growth of voids at high strain-rate is studied in copper as a model face centered cubic (fcc) material using large scale molecular dynamics (MD) methods. After a brief introduction to dynamic fracture, results are presented for the homogeneous nucleation of voids in single crystal copper and the heterogeneous nucleation in nanoscale polycrystalline copper. The simulations suggest void growth occurs through anisotropic dislocation nucleation and emission in agreement with experiment and the observed anisotropy of the tensile flow stress in fcc crystals. A phenomenological model for the transition from intergranular to transgranular fracture at high strain-rate is presented.

Copper Dynamic fracture High strain-rate Molecular dynamics Spallation Void growth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zel'dovich, Y.B. and Razier, Y.P., Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Parts 1 and 2, Academic Press, New York, NY, 1966.Google Scholar
  2. 2.
    Barker, L.M., Shahinpoor, M. and Chhabildas, L.C., In Asay, J.R. and Shahinpoor, M. (Eds.) High-Pressure Shock Compression of Solids, Springer, New York, NY, 1993, p. 43.Google Scholar
  3. 3.
    Hopkinson, J., Proc. Manchester Lit. Phil. Soc., 11 (1872) 40.Google Scholar
  4. 4.
    Hopkinson, B., Trans. R. Soc. London, 213A (1914) 437.Google Scholar
  5. 5.
    Rinehart, J.S., In Meyers, M.A. and Murr, L.E. (Eds.) Shock Waves and High-Strain-Rate Phenomena in Metals, Plenum, New York, NY, 1981, p. 3.Google Scholar
  6. 6.
    Rinehart, J.S. and Pearson, J., Behavior of Metals Under Impulsive Loads, ASME, Cleveland, OH, 1954 (reprinted by Dover, New York, NY, 1965).Google Scholar
  7. 7.
    Butcher, B.M., Barker, L.M., Munson, D.E. and Lundergan, C.D., AIAA J., 2 (1964) 977.CrossRefGoogle Scholar
  8. 8.
    Tuler, F.R. and Butcher, B.M., Int. J. Fract. Mech., 4 (1968) 431.Google Scholar
  9. 9.
    Breed, B.R., Mader, C.L. and Venable, D., J. Appl. Phys., 38 (1967) 3271.CrossRefGoogle Scholar
  10. 10.
    Gilman, J.J. and Tuler, F.R., Int. J. Fract. Mech., 6 (1970) 169.Google Scholar
  11. 11.
    Barbee Jr., T.W., Seaman, L., Crewdson, R. and Curran, D., J. Materials, 7 (1972) 393.CrossRefGoogle Scholar
  12. 12.
    Barbee Jr., T.W., Seaman, L. and Crewdson, R., Dynamic Fracture Criteria of Homogeneous Materials, Air Force Weapons Laboratory Report No. AFWL-TR-70-99, November 1970.Google Scholar
  13. 13.
    Seaman, L., Barbee Jr., T.W. and Curran, D.R., Dynamic Fracture Criteria of Homogeneous Materials, Air Force Weapons Laboratory Report No. AFWL-TR-71-156, February 1972.Google Scholar
  14. 14.
    Curran, D.R., Seaman, L. and Shockey, D.A., Phys. Today, 30 (1977) 46.CrossRefGoogle Scholar
  15. 15.
    Curran, D.R., Seaman, L. and Shockey, D.A., Phys. Rep., 147 (1987) 253.CrossRefGoogle Scholar
  16. 16.
    Meyers, M.A. and Aimone, C.T., Prog. Mater. Sci., 28 (1983) 1.CrossRefGoogle Scholar
  17. 17.
    Davison, L., Stevens, A.L. and Kipp, M.E., J. Mech. Phys. Solids, 25 (1977) 11.CrossRefGoogle Scholar
  18. 18.
    Cochran, S. and Banner, D., J. Appl. Phys., 48 (1977) 2729.CrossRefGoogle Scholar
  19. 19.
    Johnson, J.N., J. Appl. Phys., 52 (1981) 2812.CrossRefGoogle Scholar
  20. 20.
    Johnson, J.N. and Addessio, F.L., J. Appl. Phys., 64 (1988) 6699.CrossRefGoogle Scholar
  21. 21.
    Grady, D.E., J. Mech. Phys. Solids, 36 (1988) 353.CrossRefGoogle Scholar
  22. 22.
    Meyers, M.A., J. Phys. IV, 4 (1994) C8-597.Google Scholar
  23. 23.
    Gurson, A.L., J. Eng. Mater. Tech., 99 (1977) 2.Google Scholar
  24. 24.
    Barker, L.M. and Hollenbach, R.E., J. Appl. Phys., 43 (1972) 466.CrossRefGoogle Scholar
  25. 25.
    Tonks, D.L., J. Phys. IV, 4 (1994) C8-665.Google Scholar
  26. 26.
    Tonks, D.L., Zurek, A.K. and Thissell, W.R., Los Alamos National Laboratory Report No. LA-UR-95-2920, 1995.Google Scholar
  27. 27.
    Davison, L., Grady, D.E., and Shahinpoor, M., High Pressure Shock Compression of Solids II: Dynamic Fracture and Fragmentation, Springer, New York, NY, 1995.Google Scholar
  28. 28.
    Wagner, N.J., Holian, B.L. and Voter, A.F., Phys. Rev., A45 (1992) 8457.Google Scholar
  29. 29.
    Daw, M.S. and Baskes, M.I., Phys. Rev., B29 (1984) 6443.Google Scholar
  30. 30.
    Oh, D.J. and Johnson, R.A., In Vitek, V. and Srolovitz, D.J. (Eds.) Atomistic Simulation of Materials: Beyond Pair Potentials, Plenum, New York, NY, 1989, p. 233.Google Scholar
  31. 31.
    Rinehart, J.S., J. Appl. Phys., 22 (1951) 555.CrossRefGoogle Scholar
  32. 32.
    McQueen, R.G. and Marsh, S.P., J. Appl. Phys., 33 (1962) 654.CrossRefGoogle Scholar
  33. 33.
    Zurek, A.K., Johnson, J.N. and Frantz, C.E., J. Phys., 49 (1988) C3-269.Google Scholar
  34. 34.
    Christy, S., Pak, H.-R. and Meyers, M.A., In Murr, L.E., Staudhammer, K.P. and Meyers, M.A. (Eds.) Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, Marcel Dekker, New York, NY, 1986, p. 835.Google Scholar
  35. 35.
    Maron, Y. and Blaugrund, A.E., J. Appl. Phys., 53 (1982) 356.CrossRefGoogle Scholar
  36. 36.
    Brandon, D.G., Boas, M. and Rosenberg, Z., In Harding, J. (Ed.) Mechanical Properties at High Rates of Strain, Institute of Physics Conference Series No. 70, Bristol, 1984, p. 261.Google Scholar
  37. 37.
    Buchar, J., Elices, M. and Cortez, R., J. Phys. IV, 1 (1991) C3-623.Google Scholar
  38. 38.
    Kanel, G.I., Rasorenov, S.V. and Fortov, V.E., In Meyers, M.A., Murr, L.E. and Staudhammer, K.P. (Eds.) Shock-Wave and High-Strain-Rate Phenomena in Materials, Marcel Dekker, New York, NY, 1991, p. 775.Google Scholar
  39. 39.
    Eliezer, S., Gilath, I. and Bar-Noy, T., J. Appl. Phys., 67 (1990) 7155.CrossRefGoogle Scholar
  40. 40.
    Parrinello, M. and Rahman, A., J. Appl. Phys., 52 (1981) 7182.CrossRefGoogle Scholar
  41. 41.
    Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.Google Scholar
  42. 42.
    Hoover, W.G., Phys. Rev., A31 (1985) 1695.Google Scholar
  43. 43.
    Belak, J., Molecular Dynamics Simulation of High Strain Rate Void Nucleation and Growth in Copper, Proceedings of the 1997 APS Topical Conference on Shock Compression of Condensed Matter.Google Scholar
  44. 44.
    Phillpot, S.R., Wang, J., Wolf, D. and Gleiter, H., Mat. Sci. Eng., A204 (1995) 76.Google Scholar
  45. 45.
    Davison, L. and Graham, R.A., Phys. Rep., 55 (1977) 255.CrossRefGoogle Scholar
  46. 46.
    Wang, J., Yip, S., Phillpot, S.R. and Wolf, D., Phys. Rev. Lett., 71 (1993) 4182.CrossRefGoogle Scholar
  47. 47.
    Wang, J., Yip, S., Phillpot, S.R. and Wolf, D., Phys. Rev., B52 (1995) 12627.Google Scholar
  48. 48.
    Cleri, F., Wang, J. and Yip, S., J. Appl. Phys., 77 (1995) 1449.CrossRefGoogle Scholar
  49. 49.
    Hall, E.O., Proc. R. Soc. London, B64 (1951) 474.Google Scholar
  50. 50.
    Petch, N.J., J. Iron Steel Inst., 174 (1953) 25.Google Scholar
  51. 51.
    Meyers, M.A. and Ashworth, E., Phil. Mag., A46 (1982) 737.Google Scholar
  52. 52.
    Rabinowicz, E., Sci. Am., 194 (1956) 109.CrossRefGoogle Scholar
  53. 53.
    Stevens, A.L., Davison, L. and Warren, W.E., J. Appl. Phys., 43 (1972) 4922.CrossRefGoogle Scholar
  54. 54.
    Stevens, A.L., Davison, L. and Warren, W.E., In Sih, G.C. (Ed.) Dynamic Crack Propagation, Noordhoff, Leiden, 1972, p. 37.Google Scholar
  55. 55.
    Kocks, U.F., Metal. Trans., 1 (1970) 1121.Google Scholar
  56. 56.
    Belak, J., in preparation.Google Scholar
  57. 57.
    Gumbsch, P. and Beltz, G.E., Mod. Sim. Mater. Sci. Eng., 3 (1995) 597.CrossRefGoogle Scholar
  58. 58.
    Tadmor, E.B., Ortiz, M. and Phillips, R., Phil. Mag., A73 (1996) 1529.Google Scholar
  59. 59.
    Devincre, B. and Kubin, L.P., Mat. Sci. Eng., A234 (1997) 8.Google Scholar
  60. 60.
    Murr, L.E., Staudhammer, K.P. and Meyers, M.A. (Eds.) Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena, Elsevier, Amsterdam, 1995.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • J. Belak
    • 1
  1. 1.Lawrence Livermore National LaboratoryUniversity of CaliforniaLivermoreU.S.A

Personalised recommendations