Journal of Computer-Aided Materials Design

, Volume 4, Issue 3, pp 165–173 | Cite as

A multi-scale numerical modelling of crack propagation in a 2D metallic plate

  • H. Rafii-Tabar
  • L. Hua
  • M. Cross


A new multi-scale model of brittle fracture growth in an Ag plate with macroscopic dimensions is proposed in which the crack propagation is identified with the stochastic drift-diffusion motion of the crack-tip atom through the material. The model couples molecular dynamics simulations, based on many-body interatomic potentials, with the continuum-based theories of fracture mechanics. The Ito stochastic differential equation is used to advance the tip position on a macroscopic scale before each nano-scale simulation is performed. Well-known crack characteristics, such as the roughening transitions of the crack surfaces, as well as the macroscopic crack trajectories are obtained.

Crack propagation Multi-scale modelling MD-continuum modelling Stochastic modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Freund, L.B., Dynamic Fracture Mechanics, Cambridge University Press, Cambridge, U.K., 1990.Google Scholar
  2. 2.
    Fineberg, J., Gross, S.P., Marder, M. and Swinney, H.L., Phys. Rev. Lett., 67 (1991) 457.Google Scholar
  3. 3.
    Fineberg, J., Gross, S.P., Marder, M. and Swinney, H.L., Phys. Rev., B45 (1992) 5146.Google Scholar
  4. 4.
    Sharon, E., Gross, S.P. and Fineberg, J., Phys. Rev. Lett., 74 (1995) 5096.Google Scholar
  5. 5.
    Marder, M. and Liu, X., Phys. Rev. Lett., 71 (1993) 2417.Google Scholar
  6. 6.
    Sinclair, J.E. and Lawn, B.R., Proc. R. Soc. London Ser. A, 329 (1972) 83.Google Scholar
  7. 7.
    Mullins, M., Acta Metall., 32 (1984) 381.Google Scholar
  8. 8.
    Kohlhoff, P., Gumbsch, P. and Fischmeister, H.F., Phil. Mag. A, 64 (1991) 851.Google Scholar
  9. 9.
    Gumbsch, P., J. Mater. Res., 10 (1995) 2897.Google Scholar
  10. 10.
    Hua, L., Rafii-Tabar, H. and Cross, M., Phil. Mag. Lett., 75 (1997) 237.Google Scholar
  11. 11.
    Sutton, A.P. and Chen, J., Phil. Mag. Lett., 61 (1990) 139.Google Scholar
  12. 12.
    Rafii-Tabar, H. and Sutton, A.P., Phil. Mag. Lett., 63 (1991) 217.Google Scholar
  13. 13.
    Finnis, M.W. and Sinclair, J.E., Phil. Mag. A, 50 (1984) 45.Google Scholar
  14. 14.
    Holian, B.L., Blumenfeld, R. and Gumbsch, P., Phys. Rev. Lett., 78 (1997) 78.Google Scholar
  15. 15.
    Kohnke, P., ANSYS User Manual Vol. IV, Swanson Analysis System Inc, 1992.Google Scholar
  16. 16.
    Hellan, K., Introduction to Fracture Mechanics, McGraw-Hill, New York, NY, 1984.Google Scholar
  17. 17.
    Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Clarendon Press, Oxford, U.K., 1987.Google Scholar
  18. 18.
    Hale, J.M., Molecular Dynamics Simulation, Wiley, New York, NY, U.S.A., 1992.Google Scholar
  19. 19.
    Gardiner, C.W., Handbook of Stochastic Methods, Springer-Verlag, Berlin, Germany, 1985.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • H. Rafii-Tabar
    • 1
  • L. Hua
    • 1
  • M. Cross
    • 1
  1. 1.Nano-Science Simulation Group, Centre For Numerical Modelling and Process Analysis, School of Computing and Mathematical SciencesUniversity of GreenwichLondonU.K

Personalised recommendations