Journal of Sol-Gel Science and Technology

, Volume 13, Issue 1–3, pp 769–773

Atomic Force Microscopy Study of TiO2 Films Obtained by the Sol-Gel Method

  • Maria Zaharescu
  • Maria Crisan
  • I. MuŠeviČ
Article

Abstract

Atomic Force Microscopy (AFM) was used to study the influence of thermal treatments on the structural and textural properties of the sol-gel TiO2 films obtained from Ti(OC3H7i)4. X-ray diffraction (XRD), ellipsometric and porosity measurements have also been made.

The TiO2 sol-gel films were homogeneous, transparent and amorphous. Heat treatments in the 400–600°C range indicate that the films have a strong tendency to crystallization. The high initial homogeneity of the TiO2 films was preserved during the crystallization process. AFM shows that the thermally treated films exhibit uniform, monodispersed crystals.

TiO2 films sol-gel method AFM study 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.C. Bradley, R.C. Mehrotra, and D.P. Gaur, Metal Alkoxides (Academic Press, London, 1978).Google Scholar
  2. 2.
    J. Livage, M. Henry, and C. Sanchez, Progr. Solid State Chem. 18, 259 (1988).Google Scholar
  3. 3.
    B.E. Yoldas and T.W. O'Keefe, Applied Optics 18, 3133 (1979).Google Scholar
  4. 4.
    B.E. Yoldas, Applied Optics 19, 1425 (1980).Google Scholar
  5. 5.
    B.E. Yoldas, Applied Optics 21, 2960 (1982).Google Scholar
  6. 6.
    B.E. Yoldas, J. Mat. Sci. 21, 1087 (1986).Google Scholar
  7. 7.
    K.A. Vorotilov, E.V. Orlova, and V.I. Petrovsky, Thin Solid Films 207, 180 (1992).Google Scholar
  8. 8.
    M. Zaharescu, C. Parlog, M. Crisan, M. Gartner, and A. Vasilescu, J. Non-Cryst. Solids 160, 162 (1993).Google Scholar
  9. 9.
    B. Samuneva, V. Kozhukharov, Ch. Trapalis, and R. Kranold, J. Mat. Sci. 28, 2353 (1993).Google Scholar
  10. 10.
    Ch. Trapalis, V. Kozhukharov, B. Samuneva, and P. Stefanov, J. Mat. Sci. 28, 1276 (1993).Google Scholar
  11. 11.
    V. Kozhukharov, Ch. Trapalis, and B. Samuneva, J. Mat. Sci. 28, 1283 (1993).Google Scholar
  12. 12.
    C. Sanchez, J. Livage, M. Henry, and F. Babonneau, J. Non-Cryst. Solids 100, 65 (1988).CrossRefGoogle Scholar
  13. 13.
    C. Sanchez and J. Livage, New J. Chem. 14, 513 (1990).Google Scholar
  14. 14.
    J. Livage and M. Henry, in Ultrastructure Processing of Advanced Ceramics, edited by J.D. Mackenzie and D.R. Ulrich (Wiley, New York, 1988), p. 183.Google Scholar
  15. 15.
    M. Zaharescu, C. Parlog, M. Crisan, M. Sahini, and D. Moraru, Silikattechnik 37, 165 (1986).Google Scholar
  16. 16.
    M. Zaharescu, M. Crisan, D. Crisan, M. Gartner, and F. Moise, Rev. Roum. Chim. 40, 983 (1995).Google Scholar
  17. 17.
    M. Crisan, M. Zaharescu, D. Crisan, and L. Simionescu, in Proc. 8th CIMTECH, B. 13.4. (Faenza, Italy, 1994).Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Maria Zaharescu
    • 1
  • Maria Crisan
    • 1
  • I. MuŠeviČ
    • 2
  1. 1.Institute of Physical ChemistryRomanian AcademyBucharestRomania
  2. 2.J. Stefan InstituteLjubljanaSlovenija

Personalised recommendations