European Journal of Plant Pathology

, Volume 104, Issue 7, pp 631–643

Biocontrol of soil-borne fungal plant diseases by 2,4-diacetylphloroglucinol-producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA

  • Abbas Sharifi-Tehrani
  • Marcello Zala
  • Andreas Natsch
  • Yvan Moënne-Loccoz
  • Geneviève Défago
Article

Abstract

Fluorescent pseudomonads producing the antimicrobial compound 2,4-diacetylphloroglucinol (Phl) are being studied extensively for use as biocontrol agents of soil-borne fungal diseases. Some of them can produce pyoluteorin (Plt) in addition to Phl, whereas others synthesise only Phl. Here, a collection of seven Phl+ Plt- pseudomonads, seven Phl+ Plt+ pseudomonads and seven Phl- biocontrol pseudomonads were compared for protection of plant roots against fungal pathogens. The seven Phl+ Plt+ pseudomonads were identical by restriction analysis of amplified spacer ribosomal DNA (spacer ARDRA), whereas the Phl+ Plt- pseudomonads and especially the Phl- biocontrol pseudomonads were quite diverse by spacer ARDRA. Collectively, the Phl+ Plt- pseudomonads proved superior to the Phl+ Plt+ pseudomonads and the Phl- biocontrol pseudomonads for protection of tomato against Fusarium crown and root rot (in rockwool microcosms) or cucumber against Pythium damping-off (in non-sterile soil microcosms). There was no correlation between protection in vivo and inhibition of the corresponding fungal pathogen on plates. However, there was a significant correlation between the amount of Phl produced on plates and protection of tomato against Fusarium crown and root rot, but not with protection of cucumber against Pythium damping-off. Interestingly, the minority of strains unable to produce HCN, an extracellular protease, or both, were among those unable to protect plants in both pathosystems. A seedling assay was developed to compare pseudomonads for suppression of Fusarium crown and root rot in vitro, and a significant correlation was found between disease severity in vitro and in vivo. Overall, results suggest that promising biocontrol pseudomonads may be identified based on the ability to produce Phl and/or specific ARDRA-based fingerprints.

Fusarium Pythium Pseudomonas tomato cucumber 2,4-diacetylphloroglucinol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonsall RF, Weller DM and Thomashow LS (1997) Quantifi cation of 2,4-diacetylphloroglucinol produced by fluorescent Pseudomonasspp. in vitro and in the rhizosphere of wheat. Appl Environ Microbiol 63: 951-955Google Scholar
  2. Bowden K, Broadbent JL and Ross WJ (1965) Some simple anthelmintics. Br J Pharmacol 24: 714-724PubMedGoogle Scholar
  3. Carroll H, Moënne-Loccoz Y, Dowling DN and O’Gara F (1995) Mutational disruption of the biosynthesis genes coding for the antifungal metabolite 2,4-diacetylphloroglucinol does not influence the ecological fitness of Pseudomonas fluorescensF113 in the rhizosphere of sugarbeets. Appl Environ Microbiol 61: 3002-3007Google Scholar
  4. Castric KF and Castric PA (1983) Method for rapid detection of cyanogenic bacteria. Appl Environ Microbiol 45: 701-702Google Scholar
  5. Cronin D, Moënne-Loccoz Y, Fenton A, Dunne C, Dowling DN and O’Gara F (1997a) Ecological interaction of a biocontrol Pseudomonas fluorescensstrain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovorasubsp. atroseptica. FEMSMicrobiol Ecol 23: 95-106Google Scholar
  6. Cronin D, Moënne-Loccoz Y, Fenton A, Dunne C, Dowling DN and O’Gara F (1997b) Role of 2,4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad F113 with the potato cyst nematode Globodera rostochiensis. Appl Environ Microbiol 63: 1357-1361Google Scholar
  7. Dowling DN and O’Gara F (1994) Metabolites of Pseudomonasinvolved in the biocontrol of plant disease. Trends Biotechnol 12: 133-141CrossRefGoogle Scholar
  8. Duffy BK and Weller DM (1995) Use of Gaeumannomyces graminisvar. graminisalone and in combination with fluorescent Pseudomonasspp. to suppress take-all of wheat. Plant Dis 79: 907-911Google Scholar
  9. Dunne C, Delany I, Fenton A and O’Gara F (1996) Mechanisms involved in biocontrol by microbial inoculants. Agronomie 16: 721-729Google Scholar
  10. Elmer WH (1995) Association between Mn-reducing root bacteria and NaCl applications in suppression of Fusarium crown and root rot of asparagus. Phytopathology 85: 1461-1467Google Scholar
  11. Fenton AM, Stephens PM, Crowley J, O’Callaghan M and O’Gara F (1992) Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonasstrain. Appl Environ Microbiol 58: 3873-3878PubMedGoogle Scholar
  12. Fuchs J and Défago G (1991) Protection of cucumber plants against black root rot caused by Phomopsis sclerotioideswith rhizobacteria. In: Keel C, Koller B and Défago G (eds) Plant Growth-Promoting Rhizobacteria - Progress and Prospects (pp. 57-62). IOBC/WPRS (Bull XIV/8), Interlaken, Switzerland.Google Scholar
  13. Fuchs J-G, Moënne-Loccoz Y, and Défago G (1997) Nonpathogenic Fusarium oxysporumstrain Fo47 induces resistance to Fusarium wilt in tomato. Plant Dis 81: 492-496Google Scholar
  14. Fry JC (1993) Biological Data Analysis: A Practical Approach. Oxford University Press, Oxford, UK.Google Scholar
  15. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR and Phillips GB (1981) Manual of Methods for General Microbiology. American Society for Microbiology, Washington, DC, USA.Google Scholar
  16. Gould WD, Hagedorn C, Bardinelli, TR and Zablotowicz RM (1985) New selective media for enumeration and recovery of fluorescent pseudomonads from various habitats. Appl Environ Microbiol 49: 28-32Google Scholar
  17. Harrison LA, Letendre L, Kovacevich P, Pierson E and Weller D (1993) Purification of an antibiotic effective against Gaeumannomyces graminisvar. triticiproduced by a biocontrol agent, Pseudomonas aureofaciens. Soil Biol Biochem 25: 215-221CrossRefGoogle Scholar
  18. Howell CR and Stipanovic RD (1979) Control of Rhizoctonia solanion cotton seedlings with Pseudomonas fluorescensand with an antibiotic produced by the bacterium. Phytopathology 69: 480- 482Google Scholar
  19. Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaudoise Sci Nat 44: 223-270Google Scholar
  20. Keel C and Défago G (1997) Interactions between beneficial soil bacteria and root pathogens: mechanisms and ecological impact. In: Gange AC and Brown VK (eds) Multitrophic Interactions in Terrestrial Systems (pp 27-46). Blackwell Scientific Publishers, London, UK.Google Scholar
  21. Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D and Défago G (1992) Suppression of root diseases by Pseudomonas fluorescensCHA0: Importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol Plant-Microbe Interact 5: 4-13Google Scholar
  22. Keel C, Voisard C, Berling CH, Kahr G and Défago G (1989) Iron sufficiency, a prerequisite for the suppression of tobacco black root rot by Pseudomonas fluorescensstrain CHA0 under gnotobiotic conditions. Phytopathology 79: 584-589Google Scholar
  23. Keel C, Weller DM, Natsch A, Défago G, Cook RJ and Thomashow LS (1996) Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonasstrains from diverse geographic locations. Appl Environ Microbiol 62: 552- 563Google Scholar
  24. King EO, Ward MK and Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44: 301-307PubMedGoogle Scholar
  25. Kloepper JW(1991) Development of in vivo assays for prescreening antagonists of Rhizoctonia solanion cotton. Phytopathology 81: 1006-1013Google Scholar
  26. Leeman M, van Pelt JA, den Ouden FM, Heinsbroek M, Bakker PAHM and Schippers B (1995) Induction of systemic resistance by Pseudomonas fluorescensin radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. Eur J Plant Pathol 101: 655-664Google Scholar
  27. Lemanceau P and Alabouvette C (1991) Biological control of Fusarium diseases by fluorescent Pseudomonasand non-pathogenic Fusarium. Crop Prot 10: 279-286CrossRefGoogle Scholar
  28. Lemanceau P, Bakker PAHM, de Kogel WJ, Alabouvette C and Schippers B (1992) Effect of pseudobactin 358 production by Pseudomonas putidaWCS358 on suppression of Fusarium wilt of carnations by nonpathogenic Fusarium oxysporumFo47. Appl Environ Microbiol 58: 2978-2982PubMedGoogle Scholar
  29. Levy E, Gough FJ, Berlin KD, Guiana PW and Smith JT (1992) Inhibition of Septoria triticiand other phytopathogenic fungi and bacteria by Pseudomonas fluorescensand its antibiotics. Plant Pathol 41: 335-341Google Scholar
  30. Mandeel Q and Baker R (1991) Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum. Phytopathology 81: 462-469Google Scholar
  31. Maniatis T, Fritsch EF and Sambrook J (1982) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.Google Scholar
  32. Maurhofer M, Keel C, Schnider U, Voisard C, Haas D and Défago G (1992) Influence of enhanced antibiotic production in Pseudomonas fluorescensstrain CHA0 on its disease suppressive capacity. Phytopathology 82: 190-195Google Scholar
  33. Maurhofer M, Keel C, Haas D and Défago D (1994) Pyoluteorin production by Pseudomonas fluorescensstrain CHA0 is involved in the suppression of Pythiumdamping-off of cress but not of cucumber. Eur J Plant Pathol 100: 221-232Google Scholar
  34. Maurhofer M, Keel C, Haas D and Défago G (1995) Influence of plant species on disease suppression by Pseudomonas fluorescensstrain CHA0 with enhanced antibiotic production. Plant Pathol 44: 40-50Google Scholar
  35. Meyer JM and Abdallah MA (1978) The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. J Gen Microbiol 107: 319-328Google Scholar
  36. Natsch A, Keel C, Hebecker N, Laasik E and Défago G (1997) Influence of biocontrol strain Pseudomonas fluorescensCHA0 and its antibiotic overproducing derivative on the diversity of resident root colonizing pseudomonads. FEMS Microbiol Ecol 23: 341-352CrossRefGoogle Scholar
  37. Pierson EA and Weller DM (1994) Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology 84: 940-947Google Scholar
  38. Raaijmakers JM, Weller DM and Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonasspp. in natural environments. Appl Environ Microbiol 63: 881-887Google Scholar
  39. Sanchez LE, Endo RM and Leary JV (1975) A rapid technique for identifying the clones of Fusarium oxysporum f. sp. lycopersici causing crown-and root-rot of tomato. Phytopathology 65: 726- 727Google Scholar
  40. affects antibiotic production and biological control activity of Pseudomonas fluorescensPf-5}. Proc Natl Acad Sci USA 92: 12255-12259PubMedGoogle Scholar
  41. Schmidli-Sacherer P, Keel C and Défago G (1997) The global regulator GacA of Pseudomonas fluorescensCHA0 is required for suppression of root diseases in dicotyledons but not in Gramineae. Plant Pathol 46: 80-90CrossRefGoogle Scholar
  42. Schnider U, Keel C, Blumer C, Troxler J, Défago G and Haas D (1995) Amplification of the house-keeping sigma factor in Pseudomonas fluorescensCHA0 enhances antibiotic production and improves biocontrol abilities. J Bacteriol 177: 5387-5392PubMedGoogle Scholar
  43. Schwyn B and Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160: 47-56PubMedGoogle Scholar
  44. Stephens PM, Crowley JJ and O’Connell C (1993) Selection of pseudomonad strains inhibiting Pythium ultimumon sugarbeet seeds in soil. Soil Biol Biochem 25: 1283-1288CrossRefGoogle Scholar
  45. Stutz EW, Défago G and Kern H (1986) Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology 76, 181-185Google Scholar
  46. Tamietti G, Ferraris L, Matta A and Abbattista Gentile I (1993) Physiological responses of tomato plants grown in Fusariumsuppressive soil. J Phytopathol 138: 66-76Google Scholar
  47. Thomashow LS and Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescensin biological control of Gaeumannomyces graminisvar. tritici. J Bacteriol 170: 3499- 3508PubMedGoogle Scholar
  48. Thompson DC, Clarke BB and Kobayashi DY (1996) Evaluation of bacterial antagonists for reduction of summer patch symptoms in Kentucky bluegrass. Plant Dis 80: 856-862Google Scholar
  49. Vaneechoutte M, Rossau R, De Vos P, Gillis M, Janssens D, Paepe N, De Rouck A, Fiers T, Claeys G and Kersters K (1992) Rapid identification of bacteria of the Comamondaceae with amplified ribosomal DNA-restriction analysis (ARDRA). FEMS Microbiol Lett 93: 227-234CrossRefGoogle Scholar
  50. Vincent MN, Harrison LA, Brackin JM, Kovacevich PA, Mukerji P, Weller DM and Pierson EA (1991) Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciensstrain. Appl Environ Microbiol 57: 2928-2934PubMedGoogle Scholar
  51. Voisard C, Keel C, Haas D and Défago G (1989) Cyanide production by Pseudomonas fluorescenshelps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8: 351-358Google Scholar
  52. Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26: 379- 407CrossRefGoogle Scholar
  53. Weller DM and Cook RJ (1983) Suppression of take-all of wheat by seed treatment with fluorescent pseudomonads. Phytopathology 73: 463-469Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Abbas Sharifi-Tehrani
    • 1
    • 2
  • Marcello Zala
    • 1
  • Andreas Natsch
    • 1
  • Yvan Moënne-Loccoz
    • 1
  • Geneviève Défago
    • 1
  1. 1.Phytopathology group, Institute for Plant SciencesSwiss Federal Institute of Technology (ETH Zentrum)ZürichSwitzerland
  2. 2.Department of Plant Protection, College of AgricultureUniversity of TehranKarajIran

Personalised recommendations