European Journal of Plant Pathology

, Volume 104, Issue 7, pp 685–699

Characterisation of Erwinia carotovora subspecies and detection of Erwinia carotovora subsp. atroseptica in potato plants, soil and water extracts with PCR-based methods

  • Valérie Hélias
  • Anne-Claire Le Roux
  • Yves Bertheau
  • Didier Andrivon
  • Jean-Pierre Gauthier
  • Bernard Jouan


A PCR-RFLP test based on a pectate-lyase encoding gene permits the detection of several Erwinia carotovora subspecies, but requires complete DNA extraction. This paper reports on the suitability of a simplified PCR-RFLP protocol to characterise E. carotovora strains and on the performance of PCR, using the same primers, to detect the atroseptica subspecies in substrates of epidemiological significance. A collection of 140 strains from various hosts and geographical origins was characterised for biochemical traits and PCR-RFLPs. PCR performed on boiled bacterial suspensions yielded an amplification product of 434 bp in 109 of the 140 strains. None of the E. carotovora subsp. betavasculorum strains was amplified, even after complete DNA extraction. RFLPs of the PCR product yielded 24 groups, 3 of which were new. Twenty one groups were specific to one subspecies. Several strains biochemically similar to E. carotovora subsp. atroseptica, but growing at 37 °C, showed PCR-RFLP profiles characteristic of E. carotovora subsp. carotovora. Phenetic and cladistic analyses gave three main domains, not strictly related to hosts or geographical origins. The atroseptica (RFLP groups 1 and 2) and wasabiae (group 21) subspecies constituted one of the domains, despite clustering distantly from one another. Host specialisation and molecular homogeneity suggest a clonal structure within these subspecies. Conversely, E. carotovora subsp. odorifera, despite its limited host range and geographical distribution, and E. carotovora subsp. carotovora showed great molecular diversity, spreading respectively across five and 19 RFLP groups. These two subspecies shared RFLP groups 4, 5 and 6. The tree nodes in the phenograms showed a low robustness when bootstrapping the data matrix. PCR coupled with a 48h enrichment step in a polypectate-rich medium improved detection thresholds of E. carotovora subsp. atroseptica (1.5.102- 1.5.103 bacteria/ml in leaves, stems, and tuber peel extracts to 4.107 bacteria/ml in wash water) relative to either immunomagnetic separation coupled with PCR or DAS-ELISA (2.105 in plant samples to 2.107 bacteria/ml in wash water).

biochemical tests DAS-ELISA immunomagnetic separation RFLP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayers SH, Rupp P and Johnson WT (1919) A study of the alkali forming bacteria in milk. U. S. Dep Agric Bull 782Google Scholar
  2. Bonnet P (1973) Pectolytic Erwinia. I. Rapid biochemical diagnosis. Ann Phytopathol 5: 355-376Google Scholar
  3. Bouchek K (1994) Taxonomie et pouvoir pathogène d’Erwinia carotovorasubsp. wasabiae. Mem. DAA, INA Paris-Grignon, p. 34Google Scholar
  4. Cuppels D and Kelman A (1974) Evaluation of selective media for isolation of soft rot bacteria from soil and plant tissue. Phytopathology 64: 468-475Google Scholar
  5. Darrasse A, Priou S, Kotoujansky A and Bertheau Y (1994) PCR and restriction fragment length polymorphism of a pelgene as a tool to identify Erwinia carotovorain relation to potato diseases. Appl Environ Microbiol 60: 1437-1443PubMedGoogle Scholar
  6. De Boer SH and McNaughton ME (1987) Monoclonal antibodies to the lipopolysaccharide of Erwinia carotovorasubsp. atrosepticaserogroup I. Phytopathology 77: 828-832Google Scholar
  7. De Boer SH and Ward LJ (1995) PCR detection of Erwinia carotovorasubsp. atrosepticaassociated with potato tissue. Phytopathology 85: 854-858Google Scholar
  8. Dye DW (1968) A taxonomic study of the genus Erwinia.I. The ‘amylovora’ group. NZJ Sci 11: 590-607Google Scholar
  9. Elphinstone JG, Hennessy JK and Stead DE (1998) Sensitivity of different methods for the detection of Rastonia solanacearumin potato tuber extracts. Bulletin OEPP/EPPO. Bulletin 26 (In press)Google Scholar
  10. Fraaije B, Birnbaum Y and van den Bulk RW (1996) Comparison of methods for detection of Erwinia carotovorassp. atrosepticain progeny tubers derived from inoculated tubers of Solanum tuberosumL. J Phytopath 144: 551-557Google Scholar
  11. Felsenstein J (1993) Phylogeny Inference Package manual (version 3.5). Department of Genetics, University of Washington, Seattle, (Distributed by the author)Google Scholar
  12. Fréchon D, Exbrayat P, Gallet O, Guillot E, Le Clerc V, Payet N and Bertheau Y (1995) Séquences nucléotidiques pour la détection des Erwinia carotovorasubsp. atroseptica. Brevet 95. 12-803Google Scholar
  13. Gallois A, Samson R and Grimont PAD (1992) Erwinia carotovorasubsp. odorifera, subsp. nov., associated with odorous soft rot chicory (Cichorium intybusL.). Int J Syst Bacteriol 42: 582-588Google Scholar
  14. Gorris MT, Alarcon B, Lopez MM and Cambra M (1994) Characterization of monoclonal antibodies specific for Erwinia carotovorasubsp. atrosepticaand comparison of serological methods for its sensitive detection on potato tubers. Appl Environ Microbiol 60: 2076-2085Google Scholar
  15. Goto M and Matsumoto K (1987) Erwinia carotovorasubsp. wasabiaesubsp. nov. isolated from diseased rhizomes and fi-brous roots of Japenese horseradish (Eutrema wasabiMaxim.). Int J Syst Bacteriol 37: 130-135Google Scholar
  16. Hélias V (1994) Comparaison de trois techniques de détection des Erwiniapectinolytiques agents de pourritures molles. Mem. DEA, Univ. Rennes I, p. 24Google Scholar
  17. Jackson DA, Somers KM and Harvey HH (1989) Similarity coef-ficients: measures of co-occurrence and association of simply measures of occurrence. Am Nat 133: 436-453CrossRefGoogle Scholar
  18. Karnjanarat S, Tsudiya K, Matsuyama N and Wakimota S (1987) Physiological and pathological differentiation among strains of Erwinia carotovoraisolated from Japan and Thailand. Ann Phytopath Soc Japan 53: 460-469Google Scholar
  19. Lelliot RA and Dickey RS (1984) Genus VII. ErwiniaWinslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith 1920, 209AL, p. 469-476. In: Krieg NR and Holt JG (eds) Bergey's manual of systematic bacteriology, vol.1. Williams & Wilkins Co., BaltimoreGoogle Scholar
  20. Le Roux AC (1995) Applications des techniques de détection d’Erwinia carotovorassp. atrosepticaaux milieux complexes de la pomme de terre. Mem. DEA, Univ. Rennes I, p. 24Google Scholar
  21. Maniatis T, Fritsch EF and Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  22. Meneley JC and Stanghellini ME (1976) Isolation of soft-rot Erwiniaspp. from agricultural soils using an enrichment technique. Phytopathology 66: 367-370Google Scholar
  23. Minsavage GV, Thompson CM, Hopkins DL, Leite RMVBC and Stall RE (1994) Development of a polymerase chain reaction protocol for detection of Xylella fastidiosain plant tissue. Phytopathology 84: 456-461Google Scholar
  24. Page RDM (1996) TREEVIEW: an aplication to display phylogenetic trees on personal computers. Computer Applic Biosci 12: 357-358Google Scholar
  25. Pérombelon MCM (1992) Potato blackleg epidemiology, hostpathogen interaction and control. Neth J Plant Pathol 98 (supp 2): 135-146Google Scholar
  26. Pérombelon MCM and Salmond GPC (1995) Bacterial soft rot. p 1- 20, In: Singh US, Singh RP and Kohmoto K (eds) Pathogenesis and host specificity in plant diseases, Pergamon PressGoogle Scholar
  27. Priou S (1992) Variabilité phénotypique et génétique et caractérisation des sous-espèces d’Erwinia carotovoraen relation avec leur pouvoir pathogène sur pomme de terre. Ph. D. thesis. Ecole Nationale Supérieure Agronomique de Rennes, Rennes, FranceGoogle Scholar
  28. Samson R, Gouy C and Gardan L (1998) Relations génomiques parmi les sous espèces de Erwinia carotovora. Résumés, Troisièmes Rencontres de Phytobactériologie d’Aussois, 11-15 janvier 1998, 41Google Scholar
  29. Samson R, Poutier F, Sailly M, Hingand L and Jouan B (1980) Bacteria associated with soft-rot of witloof-chicory. Ann Phytopathol 12: 331Google Scholar
  30. Thomson SV, Hildebrand DC and Schroth MN (1981) Identification and nutritional differentiation of the erwinia sugar beet pathogen from members of Erwinia carotovoraand Erwinia chrysanthemi. Phytopathology 71: 1037-1042Google Scholar
  31. Van der Wolf JM, Hyman LJ, Jones DAC, Grevesse C, van Beckhoven JRCM, Van Vuurde JWL and Pérombelon MCM (1996) Immunomagnetic separation of Erwinia carotovorasubsp. atrosepticafrom potato peel extracts to improve detection sensitivity on a crystal violet pectate medium or by PCR. J Appl Bact 80: 487-495Google Scholar
  32. Verdonck L, Mergaert J, Rijkaert C, Swings J, Kerster K and De Ley J (1987) Genus Erwinia: numerical analysis of phenotype features. Int J System Bacteriol 37: 4-18Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Valérie Hélias
    • 1
  • Anne-Claire Le Roux
    • 1
  • Yves Bertheau
    • 2
  • Didier Andrivon
    • 1
  • Jean-Pierre Gauthier
    • 3
  • Bernard Jouan
    • 1
  1. 1.Station de Pathologie Végétale, Centre de RennesInstitut National de la Recherche AgronomiqueLe Rheu CedexFrance
  2. 2.Pathologie VégétaleInstitut National de la Recherche Agronomique – Institut National Agronomique Paris-GrignonParis Cedex 05France
  3. 3.Laboratoire de la Chaire de Zoologie, Centre de RennesInstitut National de la Recherche AgronomiqueLe Rheu CedexFrance

Personalised recommendations