Computational Economics

, Volume 11, Issue 1–2, pp 129–163 | Cite as

The Path Integral Approach to Financial Modeling and Options Pricing

  • Vadim Linetsky


In this paper we review some applications of the path integral methodology of quantum mechanics to financial modeling and options pricing. A path integral is defined as a limit of the sequence of finite-dimensional integrals, in a much the same way as the Riemannian integral is defined as a limit of the sequence of finite sums. The risk-neutral valuation formula for path-dependent options contingent upon multiple underlying assets admits an elegant representation in terms of path integrals (Feynman–Kac formula). The path integral representation of transition probability density (Green's function) explicitly satisfies the diffusion PDE. Gaussian path integrals admit a closed-form solution given by the Van Vleck formula. Analytical approximations are obtained by means of the semiclassical (moments) expansion. Difficult path integrals are computed by numerical procedures, such as Monte Carlo simulation or deterministic discretization schemes. Several examples of path-dependent options are treated to illustrate the theory (weighted Asian options, floating barrier options, and barrier options with ladder-like barriers).

options Pricing financial Derivatives path Integrals stochastic Models. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babel, D.F. and Eisenberg, L.K. (1993). Quantity adjusting options and forward contracts, Journal of Financial Engineering 2(2), 89-126.Google Scholar
  2. Beaglehole, D. and Tenney, M. (1991). General solutions of some interest rate contingent claim pricing equations, Journal of Fixed Income 1, 69-84.Google Scholar
  3. Beilis, A. and Dash, J. (1989a, b). A Multivariate Yield-Curve LognormalModel, CNRS PreprintCPT-89/PE.2334; A Strongly Mean-Reverting Yield Curve Model, CNRS Preprint CPT-89/PE.2337.Google Scholar
  4. Birge, J. (1995). Quasi-Monte Carlo Approaches to Options Pricing, University of Michigan Technical Report.Google Scholar
  5. Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities, Journal of Political Economy 81, 637-659.Google Scholar
  6. Chance, D. and Rich, D. (1995). Asset swaps with Asian-style payoffs, Journal of Derivatives, Summer, 64-77.Google Scholar
  7. Cox, J. and Ross, S. (1976). The valuation of options for alternative stochastic processes, Journal of Financial Economics 3, 145-166.Google Scholar
  8. Creutz, M., Jacobs, L. and Rebbi, C. (1983). ‘Monte Carlo computations in lattice gauge theories’, Physics Reports 95, 203-282.Google Scholar
  9. Dash, J. (1988). Path Integrals and Options, Part I, CNRS Preprint CPT-88/PE.2206.Google Scholar
  10. Dash, J. (1989). Path Integrals and Options, Part II, CNRS Preprint CPT-89/PE.2333.Google Scholar
  11. Dash, J. (1993). Path Integrals and Options, Invited Talk, SIAM Annual Conference, July.Google Scholar
  12. Derman, E., Karasinski, P. and Wecker, J.S. (1990). Understanding Guaranteed Exchange Rate Contracts in Foreign Stock Investments, Goldman Sachs Report, June.Google Scholar
  13. Dittrich, W. and Reuter, M. (1994). Classical and Quantum Dynamics: From Classical Paths to Path Integrals, Springer-Verlag, Berlin.Google Scholar
  14. Duffie, D. (1996). Dynamic Asset Pricing, 2nd ed., Princeton University Press, Princeton, New Jersey.Google Scholar
  15. Durrett, R. (1984). Brownian Motion and Martingales in Analysis, Wadsworth Publishing Co., Belmont, California.Google Scholar
  16. Esmailzadeh, R. (1995). Path-Dependent Options, Morgan Stanley Report.Google Scholar
  17. Eydeland, A. (1994). A fast algorithm for computing integrals in function spaces: financial applications, Computational Economics 7, 277-285.Google Scholar
  18. Feynman, R.P. (1942). The Principle of Least Action in Quantum Mechanics, Ph.D. thesis, Princeton, May 1942.Google Scholar
  19. Feynman, R.P. (1948). Space-time approach to non-relativistic quantum mechanics, Review of Modern Physics 20, 367-287.Google Scholar
  20. Feynman, R.P. and Hibbs, A. (1965). Quantum Mechanics and Path Integrals, McGraw-Hill, New Jersey.Google Scholar
  21. Fradkin, E.S. (1965). The Green's functions method in quantum field theory and quantum statistics, in: Quantum Field Theory and Hydrodynamics, Consultants Bureau, New York.Google Scholar
  22. Freidlin, M. (1985). Functional Integration and Partial Differential Equations, Princeton University Press, Princeton, New Jersey.Google Scholar
  23. Garman, M. (1985). Towards a semigroup pricing theory, Journal of Finance 40, 847-861.Google Scholar
  24. Geman, H. and Eydeland, A. (1995). Domino effect, RISK 8(April).Google Scholar
  25. Geman, H. and Yor, M. (1993). Bessel processes, asian options, and perpetuities, Mathematical Finance 3(October) 349-375.Google Scholar
  26. Geske, R. and Johnson, H.E. (1984). The American put option valued analytically, Journal of Finance 39, 1511-1524.Google Scholar
  27. Glimm, J. and Jaffe, A. (1981). Quantum Physics: A Functional Point of View, Springer-Verlag, Berlin.Google Scholar
  28. Ito, K. and McKean, H.P. (1974). Diffusion Processes and Their Sample Paths, Springer-Verlag, Berlin.Google Scholar
  29. Jamshidian, F. (1991). Forward induction and construction of yield curve diffusion models, Journal of Fixed Income 1(June), 62-74.Google Scholar
  30. Joy, C., Boyle, P.P. and Tan, K.S. (1995). Quasi-Monte Carlo Methods in Numerical FinanceWorking Paper.Google Scholar
  31. Harrison, J.M. and Kreps, D. (1979). Martingales and arbitrage in multiperiod security markets, Journal of Economic Theory 20(July) 381-408.Google Scholar
  32. Harrison, J.M. and Pliska, S.R. (1981).Martingales and stochastic integrals in the theory of continuous trading, Stochastic Processes and Applications 11, 215-260.Google Scholar
  33. Heynen, R.C. and Kat, G. (1994). Crossing barriers, RISK 7(June) 46-51.Google Scholar
  34. Heynen, R.C. and Kat, G. (1994). Partial barrier options, Journal of Financial Engineering 3(3/4), 253-274.Google Scholar
  35. Hull, J. (1996). Options, Futures and Other Derivatives, 3rd ed, Prentice Hall, New Jersey.Google Scholar
  36. Kac, M. (1949). On distributions of certain wiener functionals, Transactions of American Mathematical Society 65, 1-13.Google Scholar
  37. Kac, M. (1951). On some connections between probability and differential and integral equations, Proceedings of the 2nd Berkeley symposium on mathematical statistics and probability, University of California Press, pp. 189-215.Google Scholar
  38. Kac, M. (1980). Integration in Function Spaces and Some of its Applications, Academia Nazionale Dei Lincei, Pisa.Google Scholar
  39. Karatzas, I. and Shreve, S. (1992). Brownian Motion and Stochastic Calculus, Springer-Verlag, New York.Google Scholar
  40. Karlin, S. and Taylor, H.M. (1981). A Second Course in Stochastic Processes, Academic Press.Google Scholar
  41. Kemna, A.G.Z. and Vorst, A.C.F. (1990). A pricing method for options based on average asset values, Journal of Banking and Finance 14, 113-124.Google Scholar
  42. Kunitomo, N. and Ikeda, M. (1992). Pricing options with curved boundaries, Mathematical Finance 2(October) 275-298.Google Scholar
  43. Langouche, F., Roekaerts, D. and Tirapegui, E. (1980). Short derivation of Feynman Lagrangian for general diffusion processes, Journal of Physics A 13, 449-452.Google Scholar
  44. Langouche, F., Roekaerts, D. and Tirapegui, E. (1982). Functional Integration and Semiclassical Expansion, Reidel, Dordrecht.Google Scholar
  45. Levy, E. (1992). Pricing European average rate currency options, Journal of International Money and Finance, 11, 474-491.Google Scholar
  46. Levy, E. and Turnbull, S. (1992). Asian intelligence, RISK, (February) 53-59.Google Scholar
  47. Linetsky, V. (1996). Step options and forward contracts, University of Michigan, IOE Technical Report 96-18.Google Scholar
  48. Merton, R.C. (1973). Theory of rational options pricing, Bell Journal of Economics and Management Finance, 2, 275-298.Google Scholar
  49. Merton, R.C. (1990). Continuous-Time Finance, Blackwell, Cambridge, MA.Google Scholar
  50. Metropolis, N, Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953). Equation of state calculations by fast computing machines, Journal of Chemical Physics 21, 1087-1092.Google Scholar
  51. Paskov, S.H. and Traub, J.F. (1995). Faster valuation of financial derivatives, Journal of Portfolio Management, Fall, 113-120.Google Scholar
  52. Reiner, E. (1992). Quanto mechanics, RISK, (March), 59-63.Google Scholar
  53. Rich, D. (1996). The valuation and behavior of Black-Scholes options subject to intertemporal default risk', Review of Derivatives Research 1, 25-61.Google Scholar
  54. Ross, S.A. (1976). The arbitrage theory of capital asset pricing, Journal of Economic Theory 13(December) 341-360.Google Scholar
  55. Rubinstein, M. and Reiner, E. (1991). Breaking down the barriers, RISK 4(September), 28-35.Google Scholar
  56. Schulman, L.S. (1981). Techniques and Applications of Path Integration, Wiley, New York.Google Scholar
  57. Simon, B. (1979). Functional Integration and Quantum Physics, Academic Press, New York.Google Scholar
  58. Turnbull, S. and Wakeman, L. (1991). A quick algorithm for pricing european average options, Journal of Financial and Quantitative Analysis 26(September), 377-89.Google Scholar
  59. Wilmott, P., Dewynne, J.N. and Howison, S.D. (1993). Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford.Google Scholar
  60. Zhang, P. (1994). Flexible Asian options, Journal of Financial Engineering 3(1), 65-83.Google Scholar
  61. Zhang, P. (1995a). Flexible arithmetic Asian options, Journal of Derivatives, Spring, 53-63.Google Scholar
  62. Zhang, P. (1995b). A unified formula for outside barrier options, Journal of Financial Engineering 4(4), 335-349.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Vadim Linetsky
    • 1
  1. 1.Department of Industrial and Operations EngineeringUniversity of MichiganAnn ArborU.S.A.

Personalised recommendations