Set-Valued Analysis

, Volume 5, Issue 1, pp 37–45 | Cite as

Convexity Criteria for Set-Valued Maps

  • Pham Huu Sach
  • Nguyen Dong Yen


The paper gives necessary and sufficient conditions for a set-valued map F between Banach spaces X and Y to be convex with respect to a convex cone KY These conditions are written in terms of the contingent derivative of the map \(\widehat F( \cdot ): = F( \cdot ) + K\)

set-valued map convexity contingent derivative Clarke derivative monotonicity bifunction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aubin, J.-P. and Frankowska, H.: Set-Valued Analysis, Birkhäuser, Basel, 1990.Google Scholar
  2. 2.
    Borwein, J.: Weak tangent cone and optimization in Banach spaces, SIAM J. Control Optim. 16 (1978), 512–522.Google Scholar
  3. 3.
    Correa, R., Jofre, A. and Thibault, L.: Characterization of lower semicontinuous convex function, Proc. Amer. Math. Soc. 116 (1992), 67–72.Google Scholar
  4. 4.
    Ellaia, E. and Hassouni, H.: Characterization of nonsmooth functions through their generalized gradients, Optimization 22 (1991), 401–416.Google Scholar
  5. 5.
    Fabian, M.: Subdifferentials, local ε-supports and Asplund spaces, J. London Math. Soc. (2) 34 (1986), 568–576.Google Scholar
  6. 6.
    Fabian, M.: On classes of subdifferentiability spaces of Ioffe, Nonlinear Anal. Theory, Method Appl. 12 (1988), 63–74.Google Scholar
  7. 7.
    Fabian, M.: Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss, Acta Univ. Carolinae 30 (1989), 51–56.Google Scholar
  8. 8.
    Fabian, M. and Zivkov, N. V.: A characterization of Asplund spaces with help of local ε-support of Ekeland–Lebourg, C. R. Acad. Bulgare Sci. 38 (1985), 617–674.Google Scholar
  9. 9.
    Karamardian, S. and Schaible, S.: Seven kinds of monotone maps, J. Optim. Theory Appl. 66 (1990), 37–46.Google Scholar
  10. 10.
    Luc, D. T.: Theory of Vector Optimization, Lecture Notes in Econ. Math. Syst. 319, Springer-Verlag, New York, 1989. SVAN248.tex; 3/04/1997; 14:33; v.5; p.8Google Scholar
  11. 11.
    Luc, D. T. and Swaminathan, S.: A characterization of convex functions, Nonlinear Anal. Theory, Method Appl. 30 (1993), 697–701.Google Scholar
  12. 12.
    Luc, D. T.: Characterization of quasiconvex functions, Bull. Austral. Math. Soc. 48 (1993), 393–405.Google Scholar
  13. 13.
    Penot, J.-P. and Sach, P. H.: Generalized monotonicity of subdifferentials and generalized convexity, Université de Pau et des Pays de l'Adour, Preprint No. 94/16.Google Scholar
  14. 14.
    Rudin, W.: Functional Analysis, McGraw-Hill, New York, 1973.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Pham Huu Sach
  • Nguyen Dong Yen

There are no affiliations available

Personalised recommendations