European Journal of Plant Pathology

, Volume 104, Issue 6, pp 569–582

Genetic and physiological evidence for the production of N-acyl homoserine lactones by Pseudomonas syringae pv. syringae and other fluorescent plant pathogenic Pseudomonas species

  • C. Korsi Dumenyo
  • Asita Mukherjee
  • Wesley Chun
  • Arun K. Chatterjee
Article

Abstract

N-acyl homoserine lactones (AHLs) function as cell density (quorum) sensing signals and regulate diverse metabolic processes in several gram negative bacteria. We report that strains of Pseudomonas syringae pvs. syringae (Pss), tabaci and tomato as well as P. corrugata and P. savastanoi produce difussible AHLs that activate the lux operons of Vibrio fischeri or the tra::lacZ fusion of Agrobacterium tumefaciens. In Pss strain B3A, AHL production occurs in cell density dependent manner. Nucleotide sequence and genetic complementation data revealed the presence of ahlIPss, a luxI homolog within the Ahl+ DNA of Pss strain B3A. The \(ahlI_{Pss}^ + \) DNA expresses in AHL-deficient strains of P. fluorescens and E. carotovora subsp. carotovora (Ecc), and restores extracellular enzyme production and pathogenicity in the Ecc strain. The derivatives of Pss strains B3A and 301D carrying chromosomal ahlI::lacZ do not produce AHL, but like their wild type parents, produce extracellular protease and the phytotoxin syringomycin as well as elicit the hypersensitive reaction in tobacco leaves. While these strains also produce a basal level of β-galactosidase activity, the expression of ahlI::lacZ is substantially stimulated in the presence of multiple copies of the \(ahlI_{Pss}^ + \) DNA or by the addition of cell-free spent cultures containing AHL. The activation of β-galactosidase production occurs with spent cultures of some, but not all Pseudomonas strains which produce AHL as indicated by the Lux and tra::lacZ assays. Pss strains deficient in the global regulatory genes, gacA or lemA, produce very low levels of AHL. Since inactivation of ahlIPss eliminates AHL production and since Ahl+ Pseudomonas strains carry the homolog of ahlIPss, we conclude that ahlIPss specifies a key step in AHL biosynthesis and it has been conserved in many plant pathogenic pseudomonads.

quorum-sensing gene expression autoinducer secondary metabolites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bainton NJ, Bycroft BW, Chhabra SR, Stead P, Gledhill L, Hill PJ, Rees CED, Winson MK, Salmond GPC, Stewart GSAB and Williams P (1992) A general role for the luxautoinducer in bacterial cell signaling: control of antibiotic biosynthesis in Erwinia. Gene 116: 87-91CrossRefPubMedGoogle Scholar
  2. Barber CE, Tang JL, Feng JX, Pan MQ, Wilson TJG, Slater H, Dow JM, Williams P and Daniels MJ (1997) A novel regulatory system required for pathogenicity of Xanthomonas campestrisis mediated by a small diffusible signal molecule. Mol Microbiol 24: 555-566CrossRefPubMedGoogle Scholar
  3. Brint JM and Ohman DE (1995) Synthesis of multiple exoproducts in Pseudomonas aeruginosais under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol 177: 7155-7163PubMedGoogle Scholar
  4. Castilho BA, Olfson P and Casadaban MJ (1984) Plasmid insertion mutagenesis and lacgene fusion with mini-Mu bacteriophage transposons. J Bacteriol 158: 488-495PubMedGoogle Scholar
  5. Chatterjee A, Cui Y, Liu Y, Dumenyo CK and Chatterjee AK (1995) Inactivation of rsmAleads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovorasubsp. carotovorain the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone. Appl Environ Microbiol 61: 1959-1967PubMedGoogle Scholar
  6. Chatterjee A, Valasubramanian R, Ma W-L, Vachhani AK, Gnanamanickam S and Chatterjee AK (1996) Isolation of Ant mutants of Pseudomonas fluorescensstrain Pf7-14 altered in antibiotic production, cloning of the antC DNA, and evaluation of the role of antibiotic production in the control of blast and sheath blight of rice. Biol Control 7:185-195CrossRefGoogle Scholar
  7. Chatterjee AK, Buchanan GE, Behrens MK and Starr MP (1979) Synthesis and excretion of polygalacturonic acid trans-eliminase in Erwinia, Yersinia, and Klebsiellaspecies. Can J Microbiol 25: 94-102PubMedGoogle Scholar
  8. Chen, CY and Shaw PD (1995) GeneBank Accession Number U39802Google Scholar
  9. Chilton M-D, Currier TC, Farrand SK, Bendich AJ, Gordon MP and Nester EW (1974) Agrobacterium tumefaciensDNA and bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci USA 71: 3672-3676PubMedGoogle Scholar
  10. Cui Y, Chatterjee A, Liu Y, Dumenyo CK and Chatterjee AK (1995) Identification of a global repressor gene, rsmA,of Erwinia carotovorasubsp. carotovorathat controls extracellular enzymes, N-(3-oxohexanoyl)-L-homoserine lactone, and pathogenicity in soft-rotting Erwiniaspp. J Bacteriol 177: 5108-5115PubMedGoogle Scholar
  11. Cui Y, Madi L, Mukherjee A, Dumenyo CK and Chatterjee AK (1996) The RsmA-mutants of Erwinia carotovorasubsp. carotovorastrain Ecc71 overexpress hrpNEccand elicit a hypersensitive reaction-like response in tobacco leaves. Mol Plant-Microbe Interact 9: 565-573PubMedGoogle Scholar
  12. Eberhard A, Longin T, Widrig CA and Stranick SJ (1991) Synthesis of luxgene autoinducer in Vibrio fisheriis positively autoregulated. Arch Microbiol 155: 294-297CrossRefGoogle Scholar
  13. Engebrecht J and Silverman M (1984) Identification of genes and gene products necessary for bacterial biolumonescence. Proc Natl Acad Sci USA 81: 4154-4158PubMedGoogle Scholar
  14. Eberl L, Winson MK, Sternberg C, Stewart GS, Christiansen G, Chhabra SR, Bycroft B, Williams P, Molin S and Givskov M (1996) Involvement of N-acyl-L-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol 20: 127-136PubMedGoogle Scholar
  15. Farrand SK, Piper KR, Sackett R, Ping G, Shaw PD and Kim K-S (1996) Homoserine lactone-mediated microbial signaling: a communication system common to plant-associated bacteria. In: Stacey G, Mullin B and Gresshoff PM (eds) Biology of Plant-Microbe Interactions (pp 173-179) International Society of Molecular Plant-Microbe Interactions, St Paul, MNGoogle Scholar
  16. Figurski DH and Helinski DR (1979) Replication of an origin-containing derivative of a plasmid RK2 depend on a plasmid function provided in trans. Proc Natl Acad Sci USA 76: 1648- 1652PubMedGoogle Scholar
  17. Flavier AB, Clough S, Schell MA and Denny, TP (1997) Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol Microbiol 26: 251-259CrossRefPubMedGoogle Scholar
  18. Fuqua C, Winans SC and Greenberg EP (1996) Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 50: 727-751CrossRefPubMedGoogle Scholar
  19. Gambello MJ and Iglewski BH (1991) Cloning and characterization of Pseudomonas aeruginosa lasRgene, a transcriptional activator of elastase expression. J Bacteriol 173: 3000-3009PubMedGoogle Scholar
  20. Gray KM and Greenberg EP (1992a) Physical and functional maps of the luminescence gene cluster in an autoinducer deficient Vibrio fischeristrain isolated from a squid light organ. J Bacteriol 174: 4384-4390PubMedGoogle Scholar
  21. Gray KM and Greenberg PM (1992b) Sequencing and analysis of luxRand luxI, the luminescence regulatoty genes from the squid light organ symbiont, Vibrio fisheriES114. Mol Mar Biol Biotechnol 1: 414-419Google Scholar
  22. Greenberg EP (1997) Quorum sensing in Gram-negative bacteria. ASM News 63: 371-377Google Scholar
  23. Jones S, Yu B, Bainton NJ, Birdsall M, Bycroft BW, Chhabra SR, Cox AJR, Golby P, Reeves PJ, Stephens S, Winson MK, Salmond GPC, Stewart GSAB and Williams P (1993) The luxautoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa.EMBO J 12: 2477-2482PubMedGoogle Scholar
  24. Kaiser D and Losick R (1993) How and why bacteria talk to each other. Cell 73: 873-885CrossRefPubMedGoogle Scholar
  25. Keen NT, Tamaki S, Kobayashi D and Trollinger D (1988) Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70: 191-197CrossRefPubMedGoogle Scholar
  26. Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GSAB, Lazdunski A and Williams P (1995) Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosaPAO1. Mol Microbiol 17: 333-343PubMedGoogle Scholar
  27. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GSAB and Williams P (1997) Quorum sensing in Chromobacterium vi-olaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology (UK) 143: 3703-3711PubMedGoogle Scholar
  28. Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55: 123-142PubMedGoogle Scholar
  29. Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  30. Murata H, McEvoy JL, Chatterjee A, Collmer A and Chatterjee AK (1991) Molecular cloning of an aepAgene that activates production of extracellular pectolytic, cellulolytic, and proteolytic enzymes in Erwinia carotovorasubsp. carotovora. Mol Plant-Microbe Interact 4: 239-246Google Scholar
  31. Morgan MK and Chatterjee AK (1988) Genetic organization and regulation of proteins associated with production of syringotoxin by Pseudomonas syringaepv. syringae. J Bacteriol 170: 5689- 5697PubMedGoogle Scholar
  32. Ninfa AJ (1996) Regulation of gene transcription by extracellular stimuli. In: Neidhardt FC (ed) Escherichia coliand Salmonella ,Vol 1 (pp 1246-1262) ASM Press, Washington, DCGoogle Scholar
  33. Ochsner UA and Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant biosynthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92: 6424-6428PubMedGoogle Scholar
  34. Passador L, Cook JM, Gambello MJ, Rust L and Iglewski BH (1993) Expression of Pseudomonas aeruginosavirulence genes requires cell-to-cell communication. Science 260: 1127-1130PubMedGoogle Scholar
  35. Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH and Greenberg EP (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosavirulence genes. Proc Natl Acad Sci USA 91: 197-201PubMedGoogle Scholar
  36. Pierson III LS, Wood, DW, Pierson EA and Chancey ST (1998) Nacyl-homoserine lactone-mediated gene regulation in biological control by fluorescent pseudomonads: current knowledge and future work. Eur J Plant Path 104: 1-9CrossRefGoogle Scholar
  37. Pierson III LS, Wood DW and Chancey ST (1996) Phenazine antibiotic biosynthesis in the biological control bacterium Pseudomonas aureofaciens30-84 is regulated at multiple levels. In: Stacey G, Mullin B and Gresshoff PM (eds) Biology of Plant Microbe Interactions. (pp 463-468) International Society of Molecular Plant-Microbe Interactions, Minneapolis, MNGoogle Scholar
  38. Piper KR, von Bodman SB and Farrand SK (1993) Conjugation factor of Agrobacterium tumefaciensregulates Ti plasmid transfer by autoinduction. Nature (London) 362: 448-450CrossRefPubMedGoogle Scholar
  39. Pirhonen M, Flego D, Heikinheimo R and Palva ET (1993) A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J 12: 2467-2476PubMedGoogle Scholar
  40. Poplawsky AR and Chun W (1997) pigBdetermines a diffusible factor needed for extracellular polysaccharide slime and xanthomonadin production in Xanthomonas campestrispv. campestris. J Bacteriol 179: 439-444PubMedGoogle Scholar
  41. Reimmann C, Beyeler M, Latifi A, Winteler H, Foglino M, Lazdunski A, and Haas D (1997) The global activator GacA of Pseudomonas aerugonosaPAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24: 309-319CrossRefPubMedGoogle Scholar
  42. Rich JJ, Kinscherf TG, Kitten T and Willis DK (1994) Genetic evidence that the gacAgene encodes the cognate response regulator for the lemAsensor in Peudomonas syringae. J Bacteriol 176: 7468-7475PubMedGoogle Scholar
  43. Rudolph KWE (1995) Pseudomonas syringaepathovars. In: Singh US, Singh RP and Kohmoto K (eds) Pathogenesis and Host Specificity in Plant Diseases: Histopathological, Biochemical, Genetic and Molecular Bases. Vol. I Prokaryotes. (pp 47-138) Pergamon Press, Oxford, UKGoogle Scholar
  44. Salmond GPC, Bycroft BW, Stewart GSAB and Williams P (1995) The bacterial ‘enigma’: cracking the code of cell-cell communication. Mol Microbiol 16: 615-624PubMedGoogle Scholar
  45. Sambrook J, Fritsch EF and Maniatis T (1989) Molecular Cloning: A Laboratory Manual. 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  46. Schroeder KL and Chun W (1995) Suppression of Clavibacter michiganensissubsp. sepedonicusin potato plants by using Psudomonas corrugata. Phytopathology 85: 1147Google Scholar
  47. Shaw PD, Ping G, Daly SL, Cha C, Cronan JE, Rinehart KL and Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci USA 94: 6036-6041CrossRefPubMedGoogle Scholar
  48. Sitnikov DM, Schineller JB and Baldwin TO (1995) Transcriptional regulation of bioluminesence genes from Vibrio fischeri.Mol Microbiol 17: 801-812CrossRefPubMedGoogle Scholar
  49. Swift S, Throup JP, Williams P, Salmond GPC and Stewart GSAB (1996) Quorum sensing: a population-density component in the determination of bacterial phenotype. Trends Biochem Sci 21: 214-219CrossRefPubMedGoogle Scholar
  50. Swift, S, Winson MK, Chan PF, Bainton NJ, Birdsall M, Reeves PJ, Rees CED, Chhabras SR, Hill PJ and Throup JP, Bycroft BW, Salmond GPC, Williams P and Stewart GSAB (1993). A novel strategy for the isolation of luxIhomologues: evidence for the widespread distribution of a LuxR:LuxI superfamily in enteric bacteria. Mol. Microbiol. 10: 511-520PubMedGoogle Scholar
  51. Throup JP, Camara M, Briggs GS, Winson MK, Chhabra SR, Bycroft BW, Williams P and Stewart GSAB (1995) Characterisation of the yenI/yenRlocus from Yersinia enterocoliticamediating the synthesis of two N-acyl homoserine lactone signal molecules. Mol Microbiol 17: 345-356PubMedGoogle Scholar
  52. von Bodman SB and Farrand SK (1995) Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartiirequire induction by an N-acyl homoserine lactone autoinducer. J Bacteriol 177: 5000-5008PubMedGoogle Scholar
  53. Willis DK, Hrabak EM, Rich JJ, Barta TM, Lindow SE and Panopoulos NJ (1990) Isolation and characterization of a Pseudomonas syringaepv. syringaemutant deficient in lesion formation on bean. Mol Plant-Microbe Interact 3: 149-156Google Scholar
  54. Wood DW and Pierson III LS (1996) The phzIgene of Pseudomonas aureofaciens30-84 is responsible for the production of diffusible signal required for phenazine antibiotic production. Gene 168: 49-53CrossRefPubMedGoogle Scholar
  55. Zhang L, Murthy PJ, Kerr A and Tate ME (1993) Agrobacteriumconjugation and gene regulation by N-acyl homoserine lactones. Nature (London) 362: 446-448CrossRefPubMedGoogle Scholar
  56. Zink RT, Kemble RJ and Chatterjee AK (1984) Transposon Tn5mutagenesis in Erwinia carotovorasubsp. carotovoraand E. carotovorasubsp. atroseptica. J Bacteriol 157: 809-814PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • C. Korsi Dumenyo
    • 1
  • Asita Mukherjee
    • 1
  • Wesley Chun
    • 2
  • Arun K. Chatterjee
    • 1
  1. 1.Department of Plant PathologyUniversity of Missouri-ColumbiaColumbiaUSA
  2. 2.Department of Plant, Soil, and Entomological SciencesUniversity of IdahoMoscowUSA

Personalised recommendations