Computational Economics

, Volume 15, Issue 1–2, pp 89–106 | Cite as

Parallel Strategies for Solving SURE Models with Variance Inequalities and Positivity of Correlations Constraints

  • Erricos J. Kontoghiorghes


The problem of computing estimates of parameters in SURE models withvariance inequalities and positivity of correlations constraintsis considered. Efficient algorithms that exploit the blockbi-diagonal structure of the data matrix are presented. Thecomputational complexity of the main matrix factorizations isanalyzed. A compact method to solve the model with proper subsetregressors is proposed.

SURE models least-squares Kronecker products orthogonal factorizations parallel algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arellano, M. (1989). On the efficient estimation of simultaneous equations with covariance restrictions. Journal of Econometrics, 42, 247-265.Google Scholar
  2. Bischof, C. and Van Loan, C.F. (1987). The WY representation for products of Householder matrices. SIAM Journal on Scientific and Statistical Computing, 8 (1), 2-13.Google Scholar
  3. Björck, Å. (1996). Numerical Methods for Least Squares Problems. SIAM, Philadelphia.Google Scholar
  4. Björck, Å. and Paige, C.C. (1994). Solution of augmented linear systems using orthogonal factorizations. BIT, 34, 1-26.Google Scholar
  5. Blackford, L.S., Choi, J., Cleary, A., D'Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D. and Whaley, R. (1997). ScaLAPACK Users' Guide. SIAM, Philadelphia.Google Scholar
  6. Gill, P.E., Golub, G.H., Murray, W. and Saunders, M.A. (1974). Methods for modifying matrix factorizations. Mathematics of Computation, 28 (126), 505-535.Google Scholar
  7. Golub, G.H. and Van Loan, C.F. (1996). Matrix Computations, 3rd Edition, Johns Hopkins University Press, Baltimore, Md.Google Scholar
  8. Gulliksson, M. (1994). Iterative refinement for constrained and weighted linear least squares. BIT, 34, 239-253.Google Scholar
  9. Gulliksson, M. and Wedin, P.-Å. (1992). Modifying the QR decomposition to constrained and weighted linear least squares. SIAM Journal on Matrix Analysis and Applications, 13 (4), 1298-1313.Google Scholar
  10. Hausman, J.A., Newey, W.K. and Taylor, W.E. (1987). Efficient estimation and identification of simultaneous equation models with covariance restrictions. Econometrica, 55, 849-874.Google Scholar
  11. Kontoghiorghes, E.J. (1995). New parallel strategies for block updating the QR decomposition. Parallel Algorithms and Applications, 5 (1+2), 229-239.Google Scholar
  12. Kontoghiorghes, E.J. (1999). Parallel strategies for computing the orthogonal factorizations used in the estimation of econometric models. Algorithmica (special issue on Computational Finance), 25, 58-74.Google Scholar
  13. Kontoghiorghes, E.J. and Clarke, M.R.B. (1993a). Parallel reorthogonalization of the QR decomposition after deleting columns. Parallel Computing, 19 (6), 703-707.Google Scholar
  14. Kontoghiorghes, E.J. and Clarke, M.R.B. (1993b). Solving the updated and downdated ordinary linear model on massively parallel SIMD systems. Parallel Algorithms and Applications, 1 (2), 243-252.Google Scholar
  15. Kontoghiorghes, E.J. and Clarke, M.R.B. (1995). An alternative approach for the numerical solution of seemingly unrelated regression equation models. Computational Statistics & Data Analysis, 19 (4), 369-377.Google Scholar
  16. Kontoghiorghes, E.J. and Dinenis, E. (1994). Implementation and performance evaluation of massively parallel algorithms for block updating least squares. In V. Prasana, V. Bhatkar, L. Patnaik and S. Tripathi (eds.), Parallel Processing (Proceedings of the IEEE 1st IWPP), pp. 705-710.Google Scholar
  17. Kontoghiorghes, E.J. and Dinenis, E. (1996). Solving triangular seemingly unrelated regression equation models on massively parallel systems. In M. Gilli (ed.), Computational Economic Systems: Models, Methods & Econometrics, Vol. 5 of Advances in Computational Economics, pp. 191-201.Google Scholar
  18. Kontoghiorghes, E.J. and Dinenis, E. (1997a). Computing 3SLS solutions of simultaneous equation models with a possible singular variance-covariance matrix. Computational Economics, 10, 231-250.Google Scholar
  19. Kontoghiorghes, E.J. and Dinenis, E. (1997b). Towards the parallel implementation of the SURE model estimation algorithm. Journal of Mathematical Modelling and Scientific Computing, 8, 335-341.Google Scholar
  20. Lawson, C.L. and Hanson, R.J. (1974). Solving Least Squares Problems. Prentice-Hall Englewood Cliffs.Google Scholar
  21. Regalia, P. and Mitra, S. (1989). Kronecker products, unitary matrices and signal processing applications. SIAM Review, 31 (4), 586-613.Google Scholar
  22. Rothenberg, T.J. and Ruud, P.A. (1990). Simultaneous equations with covariance restrictions. Journal of Econometrics, 44, 25-39.Google Scholar
  23. Schott, J.R. (1997). Matrix Analysis for Statistics (Wiley series in probability and statistics). John Wiley and Sons, Inc.Google Scholar
  24. Schreiber, R. and Van Loan, C.F. (1989). A Storage Efficient WY representation for products of Householder transformations. SIAM Journal on Scientific and Statistical Computing, 10, 53-57.Google Scholar
  25. Srivastava, V.K. and Giles, D.E.A. (1987). Seemingly Unrelated Regression Equations Models: Estimation and Inference (Statistics: Textbooks and Monographs), Vol. 80. Marcel Dekker, Inc.Google Scholar
  26. Swanson, N.R. and Grange, C.W.J. (1997). Impulse response functions based on a causal approach to residual orthogonalization in vector autoregressions. Journal of the American Statistical Association, 92 (437), 357-367.Google Scholar
  27. Zellner, A. (1979). An error-components procedure (ECP) for introducing prior information about covariance matrices and analysis of multivariate regression models. International Economic Review, 20 (3), 679-692.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Erricos J. Kontoghiorghes
    • 1
  1. 1.Institut d'informatiqueUniversité de NeuchâtelNeuchâtelSwitzerland,E-mail

Personalised recommendations