Pharmacy World and Science

, Volume 19, Issue 5, pp 246–250 | Cite as

Discussion of the AED workshop.

  • Zafar Iqbal
  • J.M. Midgley
  • D.G. Watson
  • S.D. Karditsas
  • G.N. Dutton
  • W. Wilson


A method has been developed for the determination of the molecular weight of hyaluronic acid by high performance gel permeation chromatography. The molecular weight distribution was determined using three polymeric columns. Columns were calibrated using Pullulan Polymer molecular weight standards. The average molecular weight (± SD) of the hyaluronic acid in bovine vitreous humour and Healon® were 1.20 ¥ 106 Da (± 0.49 ¥ 106) and 3.01 ¥ 106 Da (± 0.14 ¥ 106), respectively. Furthermore, the depolymerization of the hyaluronic acid in the presence of ascorbic acid (the concentration found in human eye) was studied. Samples incubated in the presence of atmospheric air showed more depolymerization than those where atmospheric air had been flushed-out with nitrogen.

Ascorbic acid Depolymerization Eye High performance gel permeation chromatography Hyaluronic acid Molecular weight 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berman ER. Biochemistry of the Eye, Blakemore C (ed), N.Y. and London: Plenum Press. 1991: 291–307.Google Scholar
  2. 2.
    Fraser JRE, Laurent TC. Turnover and metabolism of hyaluro nan. Ciba Foundation Symp 1989;143: 41–59.Google Scholar
  3. 3.
    Laurent UBG. Hyaluronate in human aqueous humour. Arch Ophthalmol 1983;101: 129–30.Google Scholar
  4. 4.
    Laurent UBG, Granth KA. The molecular weight of the hyalu ronate in aqueous humour and vitreous body of rabbit and cattle eye. Exp Eye Res 1983;36: 481–92.Google Scholar
  5. 5.
    Rohen JW, Schachtschabel DO, Berghoff K. Histoauto-radiographic and biochemical studies on human and monkey trabecular meshwork and ciliary body in short term explant culture. Albrecht v. Graefes Arch Klin Exp Ophthalmol 1984;221: 199–206.Google Scholar
  6. 6.
    Denlinger JL, El-Mofty ALM, Balazs EA. Replacement of liquid vitreous with sodium hyaluronate in monkeys-I, short term evaluation. Exp Eye Res 1980;31: 81–99.Google Scholar
  7. 7.
    Denlinger JL, El-Mofty ALM, Balazs EA. Replacement of liquid vitreous with sodium hyaluronate in monkeys-II, long term evaluation. Exp Eye Res 1980;30: 101–7.Google Scholar
  8. 8.
    Stenkula S, Ivert L, Gilson I, Tornquist R, Wejidegard L. The use of sodium hyaluronate (Healon) in the treatment of retinal detachment. Ophthalmol Surg 1981;12: 435–7.Google Scholar
  9. 9.
    Percival SPB. Complications from use of sodium hyaluronate (Haelonid) in anterior segment surgery. Br J Ophthalmol 1982;66: 714–6.Google Scholar
  10. 10.
    Naeser K, Thim K, Hansen TE, Degn T, Madsen S, Skov J. Intraocular pressure in the first day after implantation of posterior chamber lens with use of sodium hyaluronate (Healon). Acta Ophthalmol 1986;64: 330–7.Google Scholar
  11. 11.
    Ruusuvaiara P, Pajari S, Setala K. Effect of sodium hyaluronate on immediate post operative IOP after extracapsular catract extraction and IOL implantation. Acta Ophthalmol 1990;68(6): 721–7.Google Scholar
  12. 12.
    Liebmann JM, Ritch R, Disclafani M, Stock L. Early intraocular pressure rise after trabeculectomy. Arch Ophthalmol 1990;108(11): 1549–52.Google Scholar
  13. 13.
    Elizabeth DS, Richard JS, Boston M. A prospective comparison of Amvisc TM and Healon (r). J Cataract Refract Surg 1986;12: 47–9.Google Scholar
  14. 14.
    Olivius E, Thorburn W. Intraocular after cataract surgery with Healon. Am Intra-Ocul Implant Soc J 1985;11:480–2.Google Scholar
  15. 15.
    Fink MR, Lengfelder E. Hyaluronic acid degradation by ascorbic acid and influence of iron. Free Rad Res Commun 1987;3(1-5): 85–92.Google Scholar
  16. 16.
    Swann DA. The degradation of hyaluronic acid by ascorbic acid. Biochem J 1967;102: 42–4.Google Scholar
  17. 17.
    Satoshi M, Shuzo I. Biochemical studies on the use of sodium hyaluronate in the anterior eye segment-II: Molecular behavior of sodium hyaluronaye injected into the anterior chamber of the rabbits. Curr Eye Res 1984;3(4): 611–7.Google Scholar
  18. 18.
    Nidermeir W, Dabson C, Laney RR. Biochem Biophs Acta 1967;144: 366–73.Google Scholar
  19. 19.
    Nidermeir W, Laney RR, Dabson C. The mechanism of action of ceruloplasmin in inhibiting the ascorbic acid induced depolymerization of hyaluronic acid. Biochem Biophs Acta 1967;148: 400–5.Google Scholar
  20. 20.
    Matsumura GO, Pigman W. Catalytic role of copper and iron ion in the depolymerization of hyaluronic acid by ascorbic acid. Arch Biochem Biophys 1965;110: 526–33.Google Scholar
  21. 21.
    Pigman W, Rizivi S. Hyaluronic acid and the oxidation reduction depolymerization reaction. Biochem Biophys Res Common 1959;1: 39–43.Google Scholar
  22. 22.
    Wong FS, Holliwell B, Richmond R, Skowroneek RW. The role of superoxide and hydroxyl radicals in the degradation of hyaluronic acid induced by metal ion and by ascorbic acid. J Inorg Biochem 1981;14: 127–34.Google Scholar
  23. 23.
    Laurent UBG. Hyaluronate in aqueous humour. Exp Eye Res.1981;33: 147–55.Google Scholar
  24. 24.
    Hjerpe A, Antonopoulos CA, Engfeldt B. Determination of hyaluronic acid using HPLC of chondroitinase digest. J Chromatogr 1982;245: 365–8.Google Scholar
  25. 25.
    Takazono I, Tanaka Y. Quantative analysis of hyaluronic acid by HPLC of streptomyces hyaluronidase digest. J Chromatogr 1984;288: 167–76.Google Scholar
  26. 26.
    Gherezghiher T, Koss CM, Nordquist ER, Wilkinson CP. Rapid and sensitive method for measurement of hyaluronic acid and isomeric chondroitin sulfates using HPLC. J Chromatogr 1987;413: 9–15.Google Scholar
  27. 27.
    Gherezghiher T, Koss CM, Nordquist ER, Wilkinson CP. Analysis of vitreous and aqueous levels of hyaluronic acid: application of HPLC. Exp Eye Res 1987;45: 347–9.Google Scholar
  28. 28.
    Paola B, Anna DG, Andrea C, Roberta C, Giovanni A. Analysis of hyaluronic acid in synovial fluid by reversed phase liquid chromatography. J Chromatogr 1990;526: 530–4.Google Scholar
  29. 29.
    Motohashi N, Mori I. The effect of synovial fluid proteins in the degradation of hyaluronic acid induced by ascorbic acid. J Inorg Biochem 1985;24: 67–74.Google Scholar
  30. 30.
    Motohashi N, Mori I. Molecular weight determination and its separation from mouse skin extart by HPGPC using precision differential refractometer. J Chromatogr 1984;299: 508–12.Google Scholar
  31. 31.
    Motoshi N, Nakamichi Y, Mori I, Nishikawa H, Umeoto J. Analysis by HPGPC of hyaluronic acid in animal skin and rabbit synovial fluid. J Chromatogr 1988;435: 335–42.Google Scholar
  32. 32.
    Saari H, Konttinen TY, Santavirta S. Synovial fluid hyaluro nate: a study using HPLC with size exclusion column. Med Sci Res 1989;17: 99–101.Google Scholar
  33. 33.
    Balaz EA, Watson D, Duff IF, et al. Arthritis Rheum 1967;10: 357–76.Google Scholar
  34. 34.
    Watson DG, Iqbal Z, Midgley JM, Dennison PR, McGhee CNJ. J Pharma and Biomed Anal 1993;11(11/12): 115–20.Google Scholar
  35. 35.
    Karditsas SD, Wilson WS, Iqbal Z, Watson DG, Dutton GN, Midgley JM. Exp Eye Res 1992;55(suppl.): 135.Google Scholar
  36. 36.
    Karditsas SD, Wilson WS, Dutton GN, Iqbal Z, Watson DG, Midgley JM. IX Congress S.O.E. Proceeding 1992: 739.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Zafar Iqbal
    • 1
  • J.M. Midgley
    • 1
  • D.G. Watson
    • 1
  • S.D. Karditsas
    • 2
  • G.N. Dutton
    • 2
  • W. Wilson
    • 1
  1. 1.Department of PharmacyUniversity of StrathclydeGlasgowU.K
  2. 2.Tennent Institute of Ophthalmology, Western InfirmaryGlasgowU.K

Personalised recommendations