Journal of Algebraic Combinatorics

, Volume 6, Issue 2, pp 141–160

A “Fourier Transform” for Multiplicative Functions on Non-Crossing Partitions

  • Alexandru Nica
  • Roland Speicher
Article

Abstract

We describe the structure of the group of normalized multiplicative functions on lattices of non-crossing partitions. As an application, we give a combinatorial proof of a theorem of D. Voiculescu concerning the multiplication of free random variables

non-crossing partition Moebius function free random variables 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ph. Biane, “Some properties of crossings and partitions,” preprint.Google Scholar
  2. 2.
    Ph. Biane, “Minimal factorizations of a cycle and central multiplicative functions on the infinite symmetric group,” preprint.Google Scholar
  3. 3.
    P. Doubilet, G.-C. Rota, and R. Stanley, “On the foundations of combinatorial theory (VI): The idea of generating function,” Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Lucien M. Le Camet al. (Ed.), University of California Press, 1972, pp. 267–318.Google Scholar
  4. 4.
    I.P. Goulden and D.M. Jackson, “Symmetric functions and Macdonald's result for top connexion coefficients in the symmetric group,”Journal of Algebra 166 (1994), 364–378.Google Scholar
  5. 5.
    U. Haagerup, “On Voiculescu's R-and S-transforms for free non-commuting random variables,” preprint.Google Scholar
  6. 6.
    D.M. Jackson, “Some combinatorial problems associated with products of conjugacy classes of the symmetric group,” J. Comb. Theory 49 (1988), 363–369.Google Scholar
  7. 7.
    G. Kreweras, “Sur les partitions non-croisées d'un cycle,” Discrete Math. 1 (1972), 333–350.Google Scholar
  8. 8.
    M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics and its Applications, Addison-Wesley, 1983, vol. 17.Google Scholar
  9. 9.
    A. Nica and R. Speicher, “On the multiplication of free n-tuples of non-commutative random variables,” With an Appendix by D. Voiculescu: Alternative proofs for the Type II free Poisson variables and for the compression results. American Journal of Mathematics 118 (1996), 799–837.Google Scholar
  10. 10.
    G.-C. Rota, “On the foundations of combinatorial theory (I): Theory of Moebius functions,” Z. Wahrscheinlichkeitstheorie verw. Geb. 2 (1964), 340–368.Google Scholar
  11. 11.
    G.-C. Rota, Finite Operator Calculus, Academic Press, 1975.Google Scholar
  12. 12.
    R. Simion and D. Ullman, “On the structure of the lattice of non-crossing partitions,” Discrete Math. 98 (1991), 193–206.Google Scholar
  13. 13.
    R. Speicher, “Multiplicative functions on the lattice of non-crossing partitions and free convolution,” Math. Annalen 298 (1994), 611–628.Google Scholar
  14. 14.
    R. Speicher, Combinatorial Theory of the Free Product with Amalgamation and Operator-Valued Free Probability Theory, Habilitationsschrift, Heidelberg, 1994.Google Scholar
  15. 15.
    R.P. Stanley, Enumerative Combinatorics, Wadsworth & Brooks / Cole Mathematics Series, 1986, vol. I.Google Scholar
  16. 16.
    D. Voiculescu, “Symmetries of some reduced free product C*-algebras,” in Operator Algebras and Their Connection with Topology and Ergodic Theory (Springer Lecture Notes in Mathematics) 1132 (1985), 556–588.Google Scholar
  17. 17.
    D. Voiculescu, “Addition of certain non-commuting random variables,” J. Funct. Anal. 66 (1986), 323–346.Google Scholar
  18. 18.
    D. Voiculescu, “Multiplication of certain non-commuting random variables,” J. Operator Theory 18 (1987), 223–235.Google Scholar
  19. 19.
    D.V. Voiculescu, K.J. Dykema, and A. Nica, Free Random Variables, CRM Monograph Series (published by the AMS), 1993, vol. 1.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Alexandru Nica
    • 1
  • Roland Speicher
    • 2
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.Institut für Angewandte MathematikUniversität HeidelbergHeidelbergGermany

Personalised recommendations