Genetic Resources and Crop Evolution

, Volume 44, Issue 6, pp 557–574 | Cite as

Isoenzyme diversity and phylogenetic affinities in Vicia subgenus Vicia (Fabaceae)

  • V. Jaaska


Isoenzyme composition of ten enzymes and variability of their genetically heterologous isoenzymes (heterozymes) encoded by 17 loci has been studied with the use of polyacrylamide gel electrophoresis in 21 vetch species of the type subgenus of the genus Vicia in comparison with V. pisiformis of the subgenus Vicilla. In total, 118 electromorphs (putative allozymes) of different frequency and variability pattern within and between species were recorded. Cladistic analysis of the allozyme data revealed in the subgenus two basic monophyletic groups with two monophyletic subclades in both. One subclade of the first group includes species related to sections Vicia, Sepium, Pseudolathyrus and Lathyroides. The second subclade of the first group consists of species of the section Peregrinae. The species of the section Narbonensis, which are considered to be closest wild relatives of the cultivated faba bean by morphological similarities, form a subclade in a second monophyletic group, with V. hybrida, V. pannonica, V. anatolica, and V. melanops of the section Hyperchusa as a sister subclade. Vicia hyrcanica and V. lutea of the same section are placed on the cladogram as basally paraphyletic in the second monophyletic group. Vicia faba is placed either as basally paraphyletic to both monophyletic groups or in the Peregrinae subclade, depending on the use of evolutionarily less variable isoenzymes alone or together with polymorphic ones in the data matrixes. The placement of cultivated V. faba and its morphologically closest wild relatives of the section Narbonensis in different monophyletic clades on the allozyme phylograms shows that they belong to different phylogenetic branches within the subgenus and indicates more remote relationship between them than previously assumed from morphological similarity. UPGMA phenograms of Manhattan distances characterizing the extent of allozymic divergence between species are presented.

genetic diversity isoenzymes phylogeneticaffinities vetches Vicia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amet, T.A., 1986. Geographical patterns of allozyme variation in a germplasm collection of faba bean (Vicia faba L.). FABIS Newsletter No. 16: 5–12.Google Scholar
  2. Ball, P.W., 1968. Vicia L. In: T.G. Tutin et al. (Eds.). Flora Europaea, vol. 2, pp. 129–136. Cambridge University Press, Cambridge.Google Scholar
  3. Bremer, K., 1994. Branch support and tree stability. Cladistics 10: 295–304.Google Scholar
  4. Chooi, W.Y., 1971. Variation in the nuclear DNA content in the genus Vicia. Genetics 68: 195–211.Google Scholar
  5. Davis, P.H. & U. Plitman, 1970. Vicia L. In: P.H. Davis (Ed.). Flora of Turkey, vol. 3, pp. 274–325. Edinburgh University Press, Edinburgh.Google Scholar
  6. Fenster, C.B., & K. Ritland, 1992. Chloroplast DNA and isozyme diversity in two Mimulus species (Scrophulariaceae) with contrasting mating systems. Amer. J. Bot. 79: 1440–1447.Google Scholar
  7. Gil, J. & J.I. Cubero, 1993. Multivariate analysis of the Vicia sativa L. aggregate. Bot. J. Linn. Soc. 113: 389–400.Google Scholar
  8. Goloboff, P.A., 1993. Estimating character weights during tree search. Cladistics 9: 83–91.Google Scholar
  9. Gunn, C.R., 1970. A key and diagrams for the seeds of one hundred species of Vicia (Leguminosae). Proc. Int. Seed Test. Assoc. 35: 773–790.Google Scholar
  10. Gustafsson, L. & P. Gustafsson, 1994. Low genetic variation in Swedish populations of the rare species Vicia pisiformis (Fabaceae) revealed with RFLP (rDNA) and RAPD. Plant Syst. Evol. 189: 133–148.Google Scholar
  11. Hamrick, J.L. & M.J. Godt, 1990. Allozyme diversity in plant species. In: A.H.D. Brown, M.T. Clegg, A.L. Kahler & B.S. Weir (Eds.). Plant Population Genetics, Breeding, and Genetic Resources, pp. 43–63, Sinauer, Sunderland, MA.Google Scholar
  12. Hanelt, P. & D. Mettin, 1970. Über die systematische Stellung temperater und meridionaler Sippen der Gattung Vicia L. Feddes Repertorium 81: 147–161.Google Scholar
  13. Hanelt, P., H, Schäfer, & J. Schultze-Motel, 1972. Die Stellung von Vicia faba L. in der Gattung Vicia L. und Betrachtungen zur Entstehung dieser Kulturart. Kulturpflanze 20: 264–275.Google Scholar
  14. Jaaska,V., 1996. Isoenzyme diversity and phylogenetic affinities among the Phaseolus beans (Fabaceae). Pl. Syst. Evol. 200: 233–252.Google Scholar
  15. Jaaska, V. & V. Jaaska, 1988. Isoenzyme variation in the genera Phaseolus and Vigna (Fabaceae): in relation to their systematics: aspartate aminotransferase and superoxide dismutase. Pl. Syst. Evol. 159: 145–159.Google Scholar
  16. Jaaska, V. & V. Jaaska, 1989. Isoenzyme differentiation between Asian beans Vigna radiata and V. mungo. Biochem. Physiol. Pfl. 185: 41–53.Google Scholar
  17. Jaaska,V. & V. Jaaska, 1990. Isoenzyme variation in Asian beans. Bot. Acta 103: 281–290.Google Scholar
  18. Kupicha, F.K., 1976. The infrageneric structure of Vicia. Not. Royal Bot. Gard. Edinburgh 34: 287–326.Google Scholar
  19. Ladizinsky, G., 1975. Seed protein electrophoresis in the wild and cultivated species of the section Faba of Vicia. Euphytica 24: 785–788.Google Scholar
  20. Leonards, C. & H.P. MÜller, 1990. Populationsgenetik und artenshutz-Untersuchungen zur genetischen Variabilität in Wild-populationen der Gattung Vicia in Rheinland und in der Eifel. Dechenia 143: 196–2Google Scholar
  21. Loulakakis, K.A. & K.A. Roubelakis-Angelakis, 1991. Plant NAD(H)-glutamate dehydrogenase consists of two subunit polypeptides and their participation in the seven isoenzymes occurs in ordered ratio. Plant Physiol. 97: 104–111.Google Scholar
  22. Mancini, R., C. De Pace, G.T. Scaracia-Mugnozza, V. Delre & D. Vittori, 1989. Isozyme gene markers in Vicia faba L. Theor. Appl. Genet. 77: 657–667.Google Scholar
  23. Maxted, N., 1993. A phenetic investigation of Vicia L. subgenus Vicia (Leguminosae, Vicieae). Bot. J. Linnean Soc. 111: 155–182.Google Scholar
  24. Perrino, P. & D. Pignone, 1981. Contribution to the taxonomy of Vicia species belonging to the section Faba. Kulturpflanze, 29: 311–319.Google Scholar
  25. Perrino, P., M. Yarwood, P. Hanelt & G.B. Polignano, 1984. Variation of seed characters in selected Vicia species. Kulturpflanze 32: 103–122.Google Scholar
  26. Perrino, P., G. Maruca, V. Linsalata, V.J. Bianco, R.N. Lester & V. Lattanzo, 1989. Flavonoid taxonomic analysis of Vicia species of section Faba. Can J. Bot. 67: 3529–3533.Google Scholar
  27. Przybylska, J., Z. Zimniak-Przybylska & P. Krajewski, 1992. Isoenzyme variation in the genetic resources of Vicia faba L. Genet. Polon. 33: 17–25.Google Scholar
  28. Przybylska, J. & Z. Zimniak-Przybylska, 1995. Electrophoretic seed albumin patterns and species relationships in Vicia sect. Faba (Fabaceae). Plant Syst. Evol. 198: 179–194.Google Scholar
  29. Raina, S.N. & Y. Ogihara, 1994. Chloroplast DNA diversity in Vicia faba and its close wild relatives: Implications for reassessment. Theor. Appl. Genet. 88: 261–266.Google Scholar
  30. Raina, S.N. & Y. Ogihara, 1995. Ribosomal DNA repeat unit polymorphism in Vicia. Theor. Appl. Genet. 90: 477–486.Google Scholar
  31. Ramsay, G. & B. Pickersgill, 1986. Interspecific hybridization between Vicia faba and other species of Vicia: Approaches to delaying embryo abortion. Biol. Zbl. 105: 171–179.Google Scholar
  32. Schäfer, H.I., 1973. Zur Taxonomie der Vicia narbonensis-Gruppe. Kulturpflanze 21: 211–273Google Scholar
  33. Schoen, D. J. & A.H.D. Brown, 1991. Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc. Natl. Acad. Sci USA 88: 4494–4497.Google Scholar
  34. Suso, M. J., M.T. Moreno & J.I. Cubero, 1993. Newisozymemarkers in Vicia faba-Inheritance and linkage. Plant Breed. 111: 170–172.Google Scholar
  35. Swofford, D.L., 1993. PAUP: Phylogenetic analysis using parsimony, version 3.1.1. Illinois Natural History Survey. Champaign, Illinois.Google Scholar
  36. Thurman, D.A., C. Palin & M.V. Laycock, 1965. Isoenzymatic nature of L-glutamic dehydrogenase in higher plants. Nature 207: 193–194.Google Scholar
  37. Torres, A.M., Z. Satovic, J. Canovas, S. Cobos & J. I. Cubero, 1995. Genetics and mapping of isozyme loci in Vicia faba L. using trisomics. Theor. Appl. Genet. 91: 783–789.Google Scholar
  38. Tzvelev, N., 1980. Systema specierum generis Vicia L. in parte Europaea URSS. Novitates Systematicae PlantarumVascularium, 17: 200–208 (in Russian).Google Scholar
  39. Van de Ven, W.T.G., N. Duncan, G. Ramsay, M. Phillips, W. Powell & R. Waugh, 1993. Taxonomic relationships between V. faba and its relatives based on nuclear and mitochondrial RFLPs and PCR analysis. Theor. Appl. Genet. 86: 71–80.Google Scholar
  40. Wendel, J.F. & N.F. Weeden, 1989. Visualization and interpretation of plant isozymes. In: D.E. Soltis & P.S. Soltis (Eds.). Isozymes in Plant Biology, pp. 5–45. Dioscoroides Press, Portland, Oregon.Google Scholar
  41. Yamamoto, K. & U. Plitmann, 1980. Isozyme polymorphism in species of the genus Vicia (Leguminosae). Japan. J. Genet. 55: 151–164.Google Scholar
  42. Yamamoto, K., 1986. Interspecific hybridization among Vicia narbonensis and its related species. Biol. Zbl. 105: 181–197.Google Scholar
  43. Zimniak-Przybylska, Z. & J. Przybylska, 1995. Electrophoretic seed globulin patterns and species relationships in Vicia section Faba (Fabaceae). J. Appl. Genet. 36: 299–312.Google Scholar
  44. Zohary, D. & M. Hopf, 1973. Domestication of pulses in the Old World. Science 182: 887–894.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • V. Jaaska
    • 1
  1. 1.Department of BotanyInstitute of Zoology and BotanyTartuEstonia

Personalised recommendations