Genetic Resources and Crop Evolution

, Volume 45, Issue 4, pp 371–382 | Cite as

Variability for the fatty acid composition of the seed oil in a germplasm collection of the genus Brassica

  • Leonardo Velasco
  • Fernando D. Goffman
  • Heiko C. Becker
Article

Abstract

A germplasm collection consisting of 1475 entries from 21 species of Brassica, including 36 lower taxa, was evaluated for the fatty acid composition of the seed oil. A total of 358 entries representing the taxonomic variability in the collection were selected and analysed by gas-liquid chromatography (GLC). The remaining 1117 entries were analysed by near-infrared reflectance spectroscopy (NIRS), after developing multi-species calibration equations. The results demonstrated that NIRS is an effective technique to assess variability for oleic, linoleic, linolenic and erucic acid in intact-seed samples of multiple Brassica species, provided that calibration equations be developed from sets containing large taxonomic and chemical variability. Some fatty acid ratios were used to estimate the efficiency of the different biosynthetic pathways. Two well-defined patterns were observed. The first one was characterised by high elongation efficiency and accumulation of high levels of erucic acid. The highest erucic acid content (>55% of the total fatty acids) was found in the cultivated species B. napus L., B. oleracea L., and B. rapa L., and in the wild species B. incana Tenore, B. rupestris Raf., and B. villosa Bivona-Bernardi, the three latter belonging to the B. oleracea group (n=9). The second pattern was characterised by high desaturation efficiency, resulting in the accumulation of high levels of the polyunsaturated linoleic and linolenic acid (up to more than 55%). The highest levels of these fatty acids were found in samples of B. elongata Ehrh., especially of the var. integrifolia Boiss. The utility of the reported variability for plant breeding is discussed.

Brassica fatty acids germplasm near-infrared reflectance spectroscopy NIRS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, L.C., O. FernándezSerrano & J. FernándezEscobar, 1991. The outset of a new oilseed crop: Brassica carinata with lowerucic acid content. In: GCIRC (Ed), Proceedings of the 8th International Rapeseed Congress, Saskatoon, Canada, 9–11 July 1991, pp. 170–176, GCIRC, Saskatoon, Canada.Google Scholar
  2. Appelqvist, L.É., 1971. Lipids in Cruciferae: VIII. The fatty acid composition of seeds of some wild or partially domesticated species. J. Am. Oil Chem. Soc. 48: 740–744.Google Scholar
  3. Carruthers, S.P., 1995. Potential developments and marketsize limitations for new oilseedrape opportunities. In: GCIRC (Ed), Proceedings of the 9th International Rapeseed Congress, Cambridge, U.K., 4–7 July 1995, pp. 1327–1331, Henry Ling Limited, Dorchester, U.K.Google Scholar
  4. Daun, J.K. & P.C. Williams, 1995. Use ofNIR spectroscopy to determine quality factors in harvest surveys of canola. In: GCIRC (Ed), Proceedings of the 9th International Rapeseed Congress, Cambridge, U.K. 4–7 July 1995, pp. 864–866, Henry Ling Limited, Dorchester, U.K.Google Scholar
  5. Downey, R.K., 1964. A selection of Brassica campestris L. containing no erucic acid in its seed oil. Can. J. Plant Sci. 44: 295.Google Scholar
  6. Friedt, W. & W. Lühs, 1995. Development in the breeding of rapeseed oil for industrial purposes. In: GCIRC (Ed), Proceedings of the 9th International Rapeseed Congress, Cambridge, U.K. 4–7 July 1995, pp. 437–448, Henry Ling Limited, Dorchester, U.K.Google Scholar
  7. Getinet, A., G. Rakow, J.P. Raney & R.K. Downey, 1994. Development of zero erucic acid Ethiopian mustard through interspecific cross with zero erucic acid Oriental mustard. Can. J. Plant Sci. 74: 793–795.Google Scholar
  8. Gladis, T., 1989. Die Gattung Brassica L. und die Reproduktion entomophiler Pflanzensippen in Genbanken. PhD Thesis, Zentralinstitut für Genetik und Kulturpflanzenforschung, Gatersleben, Germany.Google Scholar
  9. Gladis, T. & K. Hammer, 1990. Die Gaterslebener BrassicaKollektion eine Einführung. Kulturpflanze 38: 121–156.Google Scholar
  10. Kirk, J.T.O. & R.N. Oram, 1981. Isolation of erucic acidfree lines of Brassica juncea: Indian mustard now a potential oilseed crop in Australia. J. Aust. Inst. Agric. Sci. 47: 51–52.Google Scholar
  11. Kumar, P.R. & S. Tsunoda, 1978. Fatty acid spectrum of mediterranean wild Cruciferae. J. Am. Oil Chem. Soc. 55: 320–323.Google Scholar
  12. Kumar, P.R. & S. Tsunoda, 1980. Variation in oil content and fatty acid composition among seeds from the Cruciferae. In: Tsunoda, S., K. Hinata & C. GómezCampo (Eds), Brassica Crops and Wild Allies, pp. 235–252, Japan Scientific Societies Press, Tokyo.Google Scholar
  13. Lühs, W. & W. Friedt, 1995. Natural fatty acid variation in the genus Brassica and its exploitation through resynthesis. Eucarpia Cruciferae Newsl. 17: 14–15.Google Scholar
  14. Murphy, D.J., 1995. The use of conventional and molecular genetics to produce new diversity in seed oil composition for the use of plant breeders – progress, problems and future prospects. Euphytica 85: 433–440.Google Scholar
  15. Olsson, G., 1984. Selection for low erucic acid in Brassica juncea. Sveriges Utsädesf. T. 94: 187–190.Google Scholar
  16. Pleines, S. & W. Friedt, 1988. Breeding for improved C18-fatty acid composition in rapeseed (Brassica napus L.). Fat Sci. Technol. 90: 167–171.Google Scholar
  17. Prakash, S. & K. Hinata, 1980. Taxonomy, cytogenetics and origin of crop Brassicas, a review. Opera Bot. 55: 1–57.Google Scholar
  18. Röbbelen, G., 1991. Rapeseed in a changing world: plant production potential. In: GCIRC (Ed), Proceedings of the 8th International Rapeseed Congress, Saskatoon, Canada, 9–11 July 1991, pp. 29–38, GCIRC, Saskatoon, Canada.Google Scholar
  19. Röbbelen, G. & W. Thies, 1980. Biosynthesis of seed oil and breeding for improved oil quality of rapeseed. In: Tsunoda, S., K. Hinata & C. GómezCampo (eds.), Brassica Crops and Wild Allies, pp. 253–283, Japan Scientific Societies Press, Tokyo.Google Scholar
  20. Snogerup, S., 1980. The wild forms of the Brassica oleracea group (2n=18) and their possible relations to the cultivated ones. In: Tsunoda, S., K. Hinata & C. Gómez–Campo (Eds), Brassica Crops and Wild Allies, pp. 121–132, Japan Scientific Societies Press, Tokyo.Google Scholar
  21. Stefansson, B.R., F.W. Hougen & R.K. Downey, 1961. Note on the isolation of rape plants with seed oil free from erucic acid. Can. J. Plant Sci. 41: 218–219.Google Scholar
  22. Thies, W, 1971. Schnelle und einfache Analysen der Fettsäurezusammensetzung in einzelnen Raps-Kotyledonen I. Gaschromatographische und papierchromatographische Methoden. Z. Pflanzenzüchtg. 65: 181–202.Google Scholar
  23. Velasco, L. & H.C. Becker, 1998. Estimating the fatty acid composition of the oil in intactseed rapeseed (Brassica napus L.) by near-infrared reflectance spectroscopy. Euphytica (in press).Google Scholar
  24. Velasco, L., J.M. Fernández-Martínez, & A. De Haro, 1997a. Determination of the fatty acid composition of the oil in intactseed mustard by nearinfrared reflectance spectroscopy. J. Am. Oil Chem. Soc. 74, 1595–1602.Google Scholar
  25. Velasco, L., J.M. FernándezMart ínez & A. DeHaro, 1997b. Induced variability for C18 unsaturated fatty acids in Ethiopian mustard. Can. J. Plant Sci. 77: 91–95.Google Scholar
  26. Vollmann, J., A. Damboeck, S. Baumgartner & P. Ruckenbauer, 1997. Selection of induced mutants with improved linolenic acid content in camelina. Fett/Lipid 99: 357–361.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Leonardo Velasco
    • 1
  • Fernando D. Goffman
    • 1
  • Heiko C. Becker
    • 1
  1. 1.Institut für Pflanzenbau und PflanzenzüchtungGeorg-August-UniversitätGöttingenGermany

Personalised recommendations