Applied Categorical Structures

, Volume 8, Issue 1–2, pp 81–113 | Cite as

The Structural Nature of the Nerve Functor for n-Groupoids

  • Dominique Bourn
Article
  • 45 Downloads

Abstract

Given a left exact category B, the construction of the nerve functor νn for n-groupoids in B is related to a certain property of the category S-S i m p ln − 1B of the split (n − 1)-truncated simplicial objects in B, which allows us to define the split n-truncated simplicial objects in B completely internally to S-S i m p ln − 1B and thus to construct intrisincally from it the category S-S i m p lnB.

simplicial object nerve n-groupoid fibration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agl, F. A. and Steiner, R.: Nerves of multiple categories, Proc. London Math. Soc. (3) 66(1993), 92–128.Google Scholar
  2. 2.
    Ashley, N.: Simplicial T-complexes and crossed complexes: A non-Abelian version of a theorem of Dold and Kan, Dissertationes Math. 265(1988).Google Scholar
  3. 3.
    Bourn, D.: Normalization equivalence, Kernel equivalence and affine categories, Lecture Notes in Math. 1488, Springer, 1991, pp. 43–62.Google Scholar
  4. 4.
    Bourn, D.: Low dimensional geometry of the notion of choice, in Cat. Theory 1991, CMS Conf. Proc., Vol. 13, 1992, pp. 55–73.Google Scholar
  5. 5.
    Bourn, D.: Polyhedral monadicity of n-groupoids and standardized adjunction, J. Pure Appl. Algebra 99(1995), 135–181.Google Scholar
  6. 6.
    Bourn, D.: Mal'cev categories and fibration of pointed objects, Appl. Categ. Structures 4(1996), 307–327.Google Scholar
  7. 7.
    Bourn, D.: n-groupoids from n-truncated simplicial objects as a solution to a universal problem, preprint Univ-Littoral, Cahiers du Langal no. 17, 1997.Google Scholar
  8. 8.
    Brown, R. and Higgins, P. J.: The equivalence of1–groupoids and crossed complexes, Cahiers Topologie Géom. Différentielle 22(4) (1981), 371–386.Google Scholar
  9. 9.
    Burroni, A. and Penon, J.: Une construction d'un nerf des 1–categories, in preprint Univ. Caen: Categories, algèbres, esquisses et neo-esquisses, 1994, pp. 45–55.Google Scholar
  10. 10.
    Dakin, M. K.: Kan complexes and multiple groupoid structures, Ph.D. Thesis, Univ. of Wales, 1974.Google Scholar
  11. 11.
    Duskin, J.: Simplicial methods in the interpretation of Triple Cohomology, Mem. Amer. Math. Soc. 3(163) (1975).Google Scholar
  12. 12.
    Glenn, P.: Realization of cohomology classes in arbitrary exact categories, J. Pure Appl. Algebra 25(1982), 33–105.Google Scholar
  13. 13.
    Johnson, M.: The combinatorics of n-categorical pasting, J. Pure Appl. Algebra 62(1989), 211–225.Google Scholar
  14. 14.
    Kapranov, M. M. and Voevodsky, V. A.: Combinatorial geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders, Cahiers Topologie Géom. Différentielle 32(1) (1991), 11–27.Google Scholar
  15. 15.
    Power, A. J.: An n-categorical pasting theorem, in Category Theory, Proc. Internat. Conf., Lake Como, 1990, Lecture Notes in Math. 1488, Springer, 1991, pp. 326–358.Google Scholar
  16. 16.
    Street, R.: The algebra of oriented simplexes, J. Pure Appl. Algebra 49(1987), 283–335.Google Scholar
  17. 17.
    Street, R.: Parity complexes, Cahiers Topologie Géom. Différentielle 32(4) (1991), 315–343.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Dominique Bourn
    • 1
  1. 1.LANGAL – Université du Littoral –Dunkerque CedexFrance

Personalised recommendations