Set-Valued Analysis

, Volume 5, Issue 2, pp 159–180

Enlargement of Monotone Operators with Applications to Variational Inequalities

  • Regina S. Burachik
  • Alfredo N. Iusem
  • B. F. Svaiter
Article

Abstract

Given a point-to-set operator T, we introduce the operator Tε defined as Tε(x)= {u: 〈 u − v, x − y 〉 ≥ −ε for all y ɛ Rn, v ɛ T(y)}. When T is maximal monotone Tε inherits most properties of the ε-subdifferential, e.g. it is bounded on bounded sets, Tε(x) contains the image through T of a sufficiently small ball around x, etc. We prove these and other relevant properties of Tε, and apply it to generate an inexact proximal point method with generalized distances for variational inequalities, whose subproblems consist of solving problems of the form 0 ɛ Hε(x), while the subproblems of the exact method are of the form 0 ɛ H(x). If εk is the coefficient used in the kth iteration and the εk's are summable, then the sequence generated by the inexact algorithm is still convergent to a solution of the original problem. If the original operator is well behaved enough, then the solution set of each subproblem contains a ball around the exact solution, and so each subproblem can be finitely solved.

convex optimization variational inequalities proximal point methods monotone operators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alber, Ya. I.: On the regularization method for variational inequalities with nonsmooth unbounded operators in a Banach space, Appl. Math. Lett. 6(4) (1993), 63–68.Google Scholar
  2. 2.
    Brézis, H.: Opérateurs monotones maximaux et semigroups de contractions dans les espaces de Hilbert, Math. Studies 5, North-Holland, New York, 1973.Google Scholar
  3. 3.
    Bregman, L. M.: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming, U.S.S.R. Comput. Math. and Math. Phys. 7(3) (1967), 200–217.Google Scholar
  4. 4.
    Burachik, R. S. and Iusem, A. N.: A generalized proximal point algorithm for the variational inequality problem in a Hilbert space, SIAM J. Optim. (to appear).Google Scholar
  5. 5.
    Censor, Y., Iusem, A. N. and Zenios, S. A.: An interior point method with Bregman functions for the variational inequality problem with paramonotone operators (submitted for publication).Google Scholar
  6. 6.
    De Pierro, A. R. and Iusem, A. N.: A relaxed version of Bregman's method for convex programming, J. Optim. Theory Appl. 51 (1986), 421–440.Google Scholar
  7. 7.
    Ermol'ev, Yu. M.: On the method of generalized stochastic gradients and quasi-Fejér sequences, Cybernetics 5 (1969), 208–220.Google Scholar
  8. 8.
    Hiriart-Urruty, J.-B. and Lemarechal, C.: Convex Analysis and Minimization Algorithms, Springer-Verlag, Berlin, 1993.Google Scholar
  9. 9.
    Iusem, A. N.: An iterative algorithm for the variational inequality problem, Comput. Appl. Math. 13 (1994), 103–114.Google Scholar
  10. 10.
    Iusem, A. N., Svaiter, B. F. and Teboulle, M.: Entropy-like proximal methods in convex programming, Math. Oper. Res. 19 (1994), 790–814.Google Scholar
  11. 11.
    Iusem, A. N.: On some properties of paramonotone operators (submitted for publication).Google Scholar
  12. 12.
    Kabbadj, S.: Méthodes proximales entropiques, Thesis in Mathematics, Université de Montpellier, France, 1994.Google Scholar
  13. 13.
    Kiwiel, K. C.: Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Math. 1133, Springer-Verlag, Berlin, 1985.Google Scholar
  14. 14.
    Kiwiel, K. C.: Proximal minimization methods with generalized Bregman functions, SIAM J. Control and Optim. (to appear).Google Scholar
  15. 15.
    Korpelevich, G. M.: The extragradient method for finding saddle points and other problems, Ekonom. Mat. Metody 12 (1976), 747–756.Google Scholar
  16. 16.
    Lemaire, B.: Bounded diagonally stationary sequences in convex optimization, J. Convex Anal. 1 (1994), 75–86.Google Scholar
  17. 17.
    Lemaire, B.: On the convergence of some iterative methods in convex analysis, In Lecture Notes in Econom. and Math. Systems 129, Springer-Verlag, Berlin, 1995, pp. 252–268.Google Scholar
  18. 18.
    Liskovets, O. A.: Regularization of problems with discontinuous monotone, arbitrarily perturbed operators, Soviet Math., Dokl. 28 (1983), 324–327.Google Scholar
  19. 19.
    Liskovets, O. A.: Discrete regularization of problems with arbitrarily perturbed monotone operators, Soviet Math. Dokl. 34 (1987), 198–201.Google Scholar
  20. 20.
    Martinet, B.: Algorithmes pour la résolution de problèmes d'optimisation et de minimax, Thésed'Etát, Université de Grenoble, France, 1972.Google Scholar
  21. 21.
    Rockafellar, R. T.: Local boundedness of nonlinear monotone operators, Michigan Math. J. 16 (1969), 397–407.Google Scholar
  22. 22.
    Rockafellar, R. T.: Monotone operators and the proximal point algorithm, SIAM J. Control and Optimization 14 (1976), 877–898.Google Scholar
  23. 23.
    Zeidler, E.: Functional Analysis and Its Applications, Part II/B (Nonlinear Monotone Operators), Springer-Verlag, Berlin, 1985.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Regina S. Burachik
    • 1
  • Alfredo N. Iusem
    • 1
  • B. F. Svaiter
    • 2
  1. 1.Departamento de MatemáticaPontíficia Universidade Católica de Rio de JaneiroRio de Janeiro, RJBrazil
  2. 2.Instituto de Matemática Pura e AplicadaRio de Janeiro, RJBrazil

Personalised recommendations