Applied Categorical Structures

, Volume 8, Issue 1–2, pp 115–144

Prime Ideal Theory for General Algebras

  • Marcel Erné
Article
  • 87 Downloads

Abstract

We introduce ideals, radicals and prime ideals in arbitrary algebras with at least one binary operation, and we show that various separation lemmas and prime ideal theorems are special instances of one general theorem which, in turn, is equivalent to the Boolean Prime Ideal Theorem (or Ultrafilter Principle).

closure system cm-lattice distributive ideal locale prime quantale radical residuated semiprime 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubert, K. E.: Géneralisation de la théorie des r-idéaux de Prüfer-Lorenzen, C.R. Acad. Sci. Paris 238(1954), 214–216.Google Scholar
  2. 2.
    Aubert, K. E.: Theory of x-ideals, Acta Math. 107(1962), 1–52.Google Scholar
  3. 3.
    Banaschewski, B.: The power of the ultrafilter theorem, J. London Math. Soc. (2) 27(1983), 193–202.Google Scholar
  4. 4.
    Banaschewski, B.: Prime elements from prime ideals, Order 2(1985), 211–213.Google Scholar
  5. 5.
    Banaschewski, B.: The prime ideal theorem and representation of F-rings, Algebra Universalis 25(1988), 384–387.Google Scholar
  6. 6.
    Banaschewski, B. and Erné, M.: On Krull's separation lemma, Order 10(1993), 253–260.Google Scholar
  7. 7.
    Birkhoff, G.: Lattice Theory, 3rd edn, Amer. Math. Soc. Coll. Publ. 25, Providence, RI, 1973.Google Scholar
  8. 8.
    Birkhoff, G. and Pierce, R. S.: Lattice-ordered rings, An. Acad. Brasil. Ci. 28(1956), 41–69.Google Scholar
  9. 9.
    Blyth, T. S. and Janowitz, M. F.: Residuation Theory, Pergamon Press, Oxford, 1972.Google Scholar
  10. 10.
    Dilworth, R. P. and Ward,M.: Residuated lattices, Trans. Amer. Math. Soc. 45(1939), 335–354.Google Scholar
  11. 11.
    Erné, M.: Distributors and wallmanufacture, Preprint No. 204/204a, Hannover, 1986 (see also J. Pure Appl. Algebra 68(1990), 109–125).Google Scholar
  12. 12.
    Erné, M.: Ideal theory in groupoids, Preprint, Hannover, 1996.Google Scholar
  13. 13.
    Erné, M.: Closure operators on cm-lattices, Preprint, Hannover, 1996.Google Scholar
  14. 14.
    Feldman, D. and Henriksen, M.: f-rings, subdirect products of totally ordered rings, and the Prime Ideal Theorem, Preprint, 1987.Google Scholar
  15. 15.
    Fuchs, L.: Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963.Google Scholar
  16. 16.
    Halpern, J.: The independence of the Boolean prime ideal theorem from the axiom of choice, Fund. Math. 55(1964), 57–66.Google Scholar
  17. 17.
    Keimel, K.: A unified theory of minimal prime ideals, Acta Math. Acad. Sci. Hungar. 23(1972), 51–69.Google Scholar
  18. 18.
    Krull, W.: Zur Theorie der zweiseitigen Ideale in nichtkommutativen Bereichen, Math. Z. 28(1927), 481–503.Google Scholar
  19. 19.
    Lam, T. Y.: A First Course in Noncommutative Rings, Springer-Verlag, New York, 1991.Google Scholar
  20. 20.
    Lorenzen, P.: Ñber halbgeordnete Gruppen, Math. Z. 52(1949), 483–526.Google Scholar
  21. 21.
    Pincus, D.: Adding Dependent Choice to the Prime Ideal Theorem, Logic Colloquium 76, North-Holland, 1977.Google Scholar
  22. 22.
    Priestley, H. A.: Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. (3) 24(1972), 507–530.Google Scholar
  23. 23.
    Rav, Y.: Variants of Rado's selection lemma and their applications, Math. Nachr. 79(1977), 145–165.Google Scholar
  24. 24.
    Rav, Y.: Semiprime ideals in general lattices, J. Pure Appl. Algebra 56(1989), 105–118.Google Scholar
  25. 25.
    Rosenthal, K. I.: Quantales and Their Applications, Pitman Research Notes in Math. 234, Longman Scientific & Technical, 1990.Google Scholar
  26. 26.
    Scott, D. S.: Prime ideal theorems for rings, lattices and Boolean algebras, Bull. Amer. Math. Soc. 60(1954), 390 (Abstract).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Marcel Erné
    • 1
  1. 1.Department of MathematicsUniversity of HannoverHannoverGermany

Personalised recommendations