Potential Analysis

, Volume 8, Issue 3, pp 217–258 | Cite as

Singularities of Hypoelliptic Green Functions

  • Gerard Ben Arous
  • Mihai Gradinaru
Article

Abstract

This paper is devoted to a precise description of the singularity near the diagonal of the Green function associated to a hypoelliptic operator using a probabilistic approach. Examples and some applications to potential theory are given.

Hypoelliptic operator Green function degenerate diffusion Taylor stochastic expansion capacity. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben Arous, G.: ‘Flots et séries de Taylor stochastiques’, Probab. Th. Rel. Fields 81 (1989), 29–77.Google Scholar
  2. 2.
    Ben Arous, G.: ‘Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale’, Ann. Inst. Fourier 39 (1989), 73–99.Google Scholar
  3. 3.
    Ben Arous, G. and Léandre, R.: ‘Décroissance exponentielle du noyau de la chaleur sur la diagonale I, II’, Probab. Th. Rel. Fields 90 (1991), 175–202, 377–402.Google Scholar
  4. 4.
    Beals, R., Gaveau, B. and Greiner, P. C.: ‘The Green Function of Model Step Two Hypoelliptic Operators and the Analysis of Certain Tangential Cauchy Riemann Complexes’, Adv. Math. 121 (1996), 288–345.Google Scholar
  5. 5.
    Biroli, M.: ‘The Wiener Test for Poincaré-Dirichlet Forms’, in: GowriSankaran K., et al. (eds.), Classical and Modern Potential Theory and Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, 1994, 93–104.Google Scholar
  6. 6.
    Blumenthal, R. M. and Getoor, R. K.: Markov processes and potential theory, Academic Press, New York, London, 1968.Google Scholar
  7. 7.
    Bony, J. M.: ‘Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés’, Ann. Inst. Fourier 19 (1969), 277–304.Google Scholar
  8. 8.
    Castell, F.: ‘Asymptotic expansion of stochastic flows’, Probab. Th. Rel. Fields 96 (1993), 225–239.Google Scholar
  9. 9.
    Chaleyat-Maurel, M. and Le Gall, J.-F.: ‘Green function, capacity and sample paths properties for a class of hypoelliptic diffusions processes’, Probab, Th. Rel. Fields 83 (1989), 219–264.Google Scholar
  10. 10.
    Fefferman, C. L. and Sánchez-Calle, A.: ‘Fundamental solutions for second order subelliptic operators’, Ann. Math. 124 (1986), 247–272.Google Scholar
  11. 11.
    Folland, G. B.: ‘A fundamental solution for a subelliptic operator’, Bull. Amer. Math. Soc. 79 (1973), 373–376.Google Scholar
  12. 12.
    Gallardo, L.: ‘Capacités, mouvement brownien et problème de l'épine de Lebesgue sur les groupes de Lie nilpotents’, in: Heyer, H. (ed.), Probability measures on groups, Proceedings of the Conference at Oberwolfach 1981, Lecture Notes Math. 928, Springer-Verlag, Berlin, Heidelberg, New York, 1982, 96–120.Google Scholar
  13. 13.
    Gaveau, B.: ‘Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents’, Acta Math. 139 (1977), 96–153.Google Scholar
  14. 14.
    Gradinaru, M.: Fonctions de Green et support de diffusions hypoelliptiques, Thèse, Université de Paris-Sud, Orsay, 1995.Google Scholar
  15. 15.
    Greiner, P. C.: ‘A fundamental solution for a nonelliptic partial differential operator’, Canad. Jour. Math. 31 (1979), 1107–1120.Google Scholar
  16. 16.
    Greiner, P. C.: ‘On the second order hypoelliptic differential operators and the ∂-Neumann problem’, in: Diedrich, K. (ed.), Complex analysis, Proceedings of Workshop at Wuppertal 1990, Vieweg, Braunschweig, 1991, 134–142.Google Scholar
  17. 17.
    Greiner, P. C. and Stein, E. M.: ‘On the solvability of some differential operators of type □’, in: Kohn, J. and Vesentini, E. (eds.), Several complex variables, Proceedings of the conference at Cortona 1976–1977, Scuola Normale Superiore, Pisa, 1978, 106–165.Google Scholar
  18. 18.
    Léandre, R.: ‘Développement asymptotique de la densité d'une diffusion dégénéré’, Forum Math. 4 (1992), 45–75.Google Scholar
  19. 19.
    Nagel, A., Stein, E. M. and Wainger, S.: ‘Balls and metrics defined by vector fields I. Basic properties’, Acta Math. 155 (1985), 103–147.Google Scholar
  20. 20.
    Sánchez-Calle, A.: ‘Fundamental solutions and geometry of the sum of square of vector fields’, Invent. Math. 78 (1984), 143–160.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Gerard Ben Arous
    • 1
  • Mihai Gradinaru
    • 2
  1. 1.Départment de MathématiquesEacute;cole Polytechnique Fédérale de LausanneEclubens, Lausanne, Suisse
  2. 2.Institut Elie CartanUniversité Henri PoincaréVandœwore-lés-Nancy CedexFrance

Personalised recommendations