Advertisement

Set-Valued Analysis

, Volume 6, Issue 1, pp 83–111 | Cite as

On Attractors of Multivalued Semi-Flows and Differential Inclusions

  • Valery S. Melnik
  • José Valero
Article

Abstract

In this paper we study the existence of global attractors for multivalued dynamical systems. These theorems are then applied to dynamical systems generated by differential inclusions for which the solution is not unique for a given initial state. Finally, some boundary-value problems are considered.

global attractor multivalued dynamical systems differential inclusions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubin, J. P. and Cellina, A.: Differential Inclusions, Springer-Verlag, Berlin, 1984.Google Scholar
  2. 2.
    Aubin, J. P. and Frankowska, H.: Set-Valued Analysis, Birkhäuser, Boston, 1990.Google Scholar
  3. 3.
    Babin, A. V. and Vishik, M. I.: Attractors of Evolution Equations, Nauka, Moscow, 1989.Google Scholar
  4. 4.
    Babin, A. V. and Vishik, M. I.: Maximal attractors of semigroups, corresponding to evolution differential equations, Math. Sbornik 126(3), (1985), 397–417 (English translation in Math. USSR Sb. 54 (1986), 387–408).Google Scholar
  5. 5.
    Babin, A. V.: Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain, Russian Acad. Sci. Izv. Math. 44(2), (1995), 207–223 (Translated from Izv. Russian Akad. Nauk. 58 (1994)).Google Scholar
  6. 6.
    Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei, Bucharest, 1976.Google Scholar
  7. 7.
    Borisovich, A. V., Gelman, B. I., Myskis, A. D., and Obuhovsky, V. V.: Introduction to the Theory of Multivalued Maps, VGU, Voronezh, 1986.Google Scholar
  8. 8.
    Brezis, H.: Problemes unilateraux, J. Math. Pures Appl. 51 (1972), 1–168.Google Scholar
  9. 9.
    Brezis, H.: Análisis Funcional, Alianza Editorial, Madrid, 1984 (Translated from Analyse Fonctionalle, Masson, Paris, 1993).Google Scholar
  10. 10.
    Chepyzhov, V. V. and Vishik, M. I.: Trajectory attractors for evolution equations, CR Acad. Sci. Paris 321(10), (1997), 1309–1314.Google Scholar
  11. 11.
    Chueshov, I. D.: Global attractors of nonlinear problems of mathematical physics, Uspekhi Mat. Nauk 48(3), (1993), 135–162 (English translation in Russian Math. Surveys 48(3), (1987), 133–161).Google Scholar
  12. 12.
    Fedorchuk, V. V. and Filippov, V. V.: General Topology, MGU, Moscow, 1988.Google Scholar
  13. 13.
    Gobbino, M. and Sardella, M.: On the connectedness of attractors for dynamical systems, J. Differential Equations 133 (1997), 1–14.Google Scholar
  14. 14.
    Hale, J. K.: Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr. 25, Amer. Math. Soc., Providence, RI, 1988.Google Scholar
  15. 15.
    Haraux, A.: Attractors of asymptotically compact processes and applications to nonlinear partial differential equations, Comm. Partial Differential Equations 13(11) (1988), 1383–1414.Google Scholar
  16. 16.
    Ladyzhenskaya, O. A.: Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991.Google Scholar
  17. 17.
    Ladyzhenskaya, O. A.: Some comments to my papers on the theory of attractors for abstract semigroups, Zap. Nauchn. Sem. LOMI 188(21) (1990), 102–112.Google Scholar
  18. 18.
    Melnik, V. S.: Multivalued semiflows and their attractors, Dokl. Akad. Nauk. 343(3) (1995), 302–305.Google Scholar
  19. 19.
    Melnik, V. S.: Multivalued semidynamic systems and their attractors, Dokl. Akad. Nauk Ukraini 1995, No. 2, 22–27.Google Scholar
  20. 20.
    Melnik, V. S.: Multivalued dynamics of non-linear infinite-dimensional systems, Preprint 94–71, 1994, Acad. Sci. Ukraine, 40 pp.Google Scholar
  21. 21.
    Melnik, V. S. and Valero, J.: On multivalued dynamical systems which are deliveried by evolution inclusions, Proceedings of the Nonlinear Oscillations Conference, Prague, 9–13 September, 1996, pp. 139–142.Google Scholar
  22. 22.
    Melnik, V. S. and Valero, J.: On attractors of multivalued semidynamical systems generated by evolution inclusions, Dokl. Akad. Nauk. (to appear).Google Scholar
  23. 23.
    Melnik, V. S. and Valero, J.: On attractors of multivalued semidynamical systems in infinite dimensional spaces, Preprint No. 5, 1997, Universidad de Murcia, 45 pp.Google Scholar
  24. 24.
    Shuhong, F.: Global attractor for general nonautonomous dynamical systems, Nonlinear World 2 (1995), 191–216.Google Scholar
  25. 25.
    Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988.Google Scholar
  26. 26.
    Tolstonogov, A. A.: On solutions of evolution inclusions. I, Sibirsk. Math. Zh. 33(3) (1992), 161–174 (English translation in Siberian Math. J. 33(3) (1992)).Google Scholar
  27. 27.
    Valero, J.: Attractors of both semidynamic systems and evolutionary inclusions, Dokl. Akad. Nauk. Ukraini, 1994, No. 5, 7–11.Google Scholar
  28. 28.
    Valero, J.: On evolutionary inclusion attractors in Banach spaces, Ukrain. Mat. Zh. 47(5) (1995), 602–610.Google Scholar
  29. 29.
    Willard, S.: General Topology, Addison-Wesley, Redwood City, 1970.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Valery S. Melnik
    • 1
  • José Valero
    • 2
  1. 1.Institute of System Applied AnalysisKievUkraine
  2. 2.Fundación Universitaria San PabloElche (Alicante)Spain

Personalised recommendations