Advertisement

Journal of Biomolecular NMR

, Volume 18, Issue 2, pp 165–171 | Cite as

13C NMR chemical shifts can predict disulfide bond formation

  • Deepak Sharma
  • Krishna Rajarathnam
Article

Abstract

The presence of disulfide bonds can be detected unambiguously only by X-ray crystallography, and otherwise must be inferred by chemical methods. In this study we demonstrate that 13C NMR chemical shifts are diagnostic of disulfide bond formation, and can discriminate between cysteine in the reduced (free) and oxidized (disulfide bonded) state. A database of cysteine 13C Cα and Cβ chemical shifts was constructed from the BMRB and Sheffield databases, and published journals. Statistical analysis indicated that the Cβ shift is extremely sensitive to the redox state, and can predict the disulfide-bonded state. Further, chemical shifts in both states occupy distinct clusters as a function of secondary structure in the Cα/Cβ chemical shift map. On the basis of these results, we provide simple ground rules for predicting the redox state of cysteines; these rules could be used effectively in NMR structure determination, predicting new folds, and in protein folding studies.

13chemical shifts cysteine disulfide bond redox 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Iwadate, M., Asakura, T. and Williamson, M.P. (1999) J. Biomol. NMR, 13, 199–211.Google Scholar
  2. Otting, G., Liepinsh, E. and Wüthrich, K. (1993) Biochemistry, 32, 3571–3582.Google Scholar
  3. Spera, S. and Bax, A. (1991) J. Am. Chem. Soc., 113, 5490–5492.Google Scholar
  4. Srinivasan, N., Sowdhamini, R., Ramakrishnan, C. and Balaram, P. (1990) Int. J. Pept. Protein Res., 36, 147–155.Google Scholar
  5. Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol., 222, 311–333.Google Scholar
  6. Wishart, D.S. and Sykes, B.D. (1994) J. Biomol. NMR, 4, 171–180.Google Scholar
  7. Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L. and Sykes, B.D. (1995a) J. Biomol. NMR, 6, 135–140.Google Scholar
  8. Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S. and Sykes, B.D. (1995b) J. Biomol. NMR, 5, 67–81.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Deepak Sharma
    • 1
  • Krishna Rajarathnam
    • 1
  1. 1.Department of Human Biological Chemistry and Genetics and Sealy Center for Structural BiologyUniversity of Texas Medical BranchGalvestonU.S.A.

Personalised recommendations