Biodegradation

, Volume 9, Issue 6, pp 513–525 | Cite as

On the detection of environmental effects on complex matrices combining off-line liquid chromatography and 1H-NMR

  • Arjen Lommen
  • Joop M. Weseman
  • Geo O. Smith
  • Hub P.J.M. Noteborn
Article

Abstract

An off-line combination of 400 MHz proton (1H)-NMR spectroscopy and liquid chromatography (LC) has been used for the multi-component comparison of low-molecular weight compounds (i.e., chemical fingerprinting) in model fluid broths and (processed) tomato. The focus of the research described is on (i) devising GLP-like methods for sample handling and NMR measurements that will ensure reproducibility, (ii) an automated handling of data, (iii) validity of the designed methodology and (iv) the interpretation of large amounts of data.

automation environment fingerprinting GLP LC NMR statistics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bank S (1997) Some principles of NMR spectroscopy and their novel application. Conc. Magn. Res. 9(2): 83–93Google Scholar
  2. Belton PS, Delgadillo I, Holmes E, Nicholls A, Nicholson JK & Spraul M (1996) Use of high field 1H-NMR spectroscopy for the analysis of liquid foods. J. Agric. Food Chem. 44(6): 1483–1487Google Scholar
  3. Holmes E, Foxall PJD, Farrant RD, Nicholson JK & Lindon JC (1997) 750 MHz 1H-NMR spectroscopy characterisation of the complex metabolic pattern of urine from patients with inborn errors of metabolism. J. Pharm. Biomed. Anal. 15(11): 1647–1659Google Scholar
  4. Korhammer SA & Bernreuther A (1996) Hyphenation of high-performance liquid chromatography (HPLC) and other chromatographic techniques (SFC, GPC, GC, CE) with nuclear magnetic resonance (NMR): A review. Fresenius' J. Anal. Chem. 354(2): 131–135Google Scholar
  5. Lenz, EM, Greatbanks D, Wilson, ID, Spraul M, Hofmann M, Troke J, Lindon JC & Nicholson JK (1996) Direct characterisation of drug glucoronide isomers in human urine by HPLC NMR spectroscopy: application to the positional isomers of 6,11-dihydro-11-oxodibenzoxepin-2-acetic acid glucoronide. Anal. Chem. 68(17): 2832–2837Google Scholar
  6. Noteborn HPJM, Bienenmann-Ploum ME, van den Berg JHJ, Alink GM, Zolla L, Reynaerts A, Pensa M & Kuiper HA (1995). Safety assessment of the Bacillus thuringiensis insecticidal crystal protein CryIA(b) expressed in transgenic tomatoes. In: Engel K-H, Takeoka GR, Teranishi R (Eds) ACS Symposium Series 605 (pp 134–147). ACS, Washington DCGoogle Scholar
  7. Noteborn HPJM, Lommen A, Weseman JM, van der Jagt RCM & Groenendijk FPF (1998) Chemical fingerprinting and in vitro toxicological profiling for the safety evaluation of transgenic food crops. In: Report of the Demonstration Programme on Food Safety Evaluation of Genetically Modified Foods as a Basis for Market Introduction (pp 49–77). Ministry of Economic Affairs, The Hague, The NetherlandsGoogle Scholar
  8. Ratcliffe RG (1991) Nuclear magnetic resonance in plant science research. Bot. J. Scot. 46(1): 107–119Google Scholar
  9. Scarfe GB, Wilson ID, Spraul M, Hofmann M, Braumann U, Lindon JC & Nicholson JK (1997) Application of directly coupled high performance liquid chromatography nuclear magnetic resonance mass spectrometry to the detection and characterisation of the metabolites of 2-bromo-4-trifluoromethylaniline in rat urine. Anal. Comm. 34(2): 37–39Google Scholar
  10. Sidelmann UG, Braumann U, Hofmann M, Spraul M, Lindon JC, Nicholson JK & Hansen SH (1997) Directly coupled 880 MHz 1H-NMR spectroscopy of urine and its application to the identification of the major phase II metabolites of tolfenamic acid. Anal. Chem. 69(4): 607–612Google Scholar
  11. Spraul M, Hofmann M, Ackermann R, Nicholls AW, Damment JP, Haseldon JN, Shockcor JP, Nicholson JK & Lindon JC (1997) Flow injection proton nuclear magnetic resonance spectroscopy combined with pattern recognition methods: Implications for rapid structural studies and high throughput biochemical screeningGoogle Scholar
  12. Van Den Thillart G & van Waarde A (1996) Nuclear magnetic resonance spectroscopy of living systems: Applications in comparative physiology. Phyisol. Rev. 76(3): 799–837Google Scholar
  13. Vogels JWTE, Tas AC, van den Berg F & van der Greef J (1993) A new method for the classification of wines based on proton and carbon-13 NMR spectroscopy in combination with pattern recognition techniques. Chemometries Intelligent Laboratory Systems 21(2–3): 249–258Google Scholar
  14. Vogels JWTE, Terwel L, Tas AC, van den Berg F, Dukel F & van der Greef J (1996a) Detection of adulteration in orange juices by a new screening method using proton NMR spectroscopy in combination with pattern recognition techniques. J. Agricul. Food Chem. 44(1): 175–180Google Scholar
  15. Vogels JWTE, Tas AC, Venekamp J & van der Greef J (1996b) Partial linear fit: A new NMR spectroscopy preprocessing tool for pattern recognition applications. J. Chemom. 10(5–6): 425–438Google Scholar
  16. Wasser JS, Lawler RG & Jackson DC (1996). Nuclear magnetic resonance spectroscopy and its applications in comparative physiology. Physiol. Zool. 69(1): 1–34Google Scholar
  17. Waymouth C. (1959) Rapid proliferation of sublines of NCTC Clone 929 (strain L) mouse cells in a clinically definied medium (MB 752/1). J. Nat. Cancer Institute 22: 1003–1007Google Scholar
  18. Wider G (1990). Elimination of baseline artifacts in NMR spectra by oversampling. J. Magn. Res. 89: 406–409Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Arjen Lommen
    • 1
  • Joop M. Weseman
    • 1
  • Geo O. Smith
    • 1
  • Hub P.J.M. Noteborn
    • 1
  1. 1.State Institute for Quality Control of Agricultural Products (RIKILT-DLO)AE WageningenThe Netherlands

Personalised recommendations