Journal of Biomolecular NMR

, Volume 13, Issue 2, pp 149–159 | Cite as

Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation

  • Matthew J. Wood
  • Elizabeth A. Komives
Article

Abstract

Heterologous expression in Pichia pastoris has many of the advantages of eukaryotic expression, proper folding and disulfide bond formation, glycosylation, and secretion. Contrary to other eukaryotic systems, protein production from P.pastoris occurs in simple minimal defined media making this system attractive for production of labeled proteins for NMR analysis. P.pastoris is therefore the expression system of choice for NMR of proteins that cannot be refolded from inclusion bodies or that require post-translational modifications for proper folding or function. The yield of expressed proteins from P.pastoris depends critically on growth conditions, and attainment of high cell densities by fermentation has been shown to improve protein yields by 10–100-fold. Unfortunately, the cost of the isotopically enriched fermentation media components, particularly 15NH4OH, is prohibitively high. We report fermentation methods that allow for both 15N- labeling from (15NH4)2SO4 and 13C-labeling from 13C-glucose or 13C-glycerol of proteins produced in Pichia pastoris. Expression of an 83 amino acid fragment of thrombomodulin with two N-linked glycosylation sites shows that fermentation is more cost effective than shake flask growth for isotopic enrichment.

(15NH4)2SO4 13C-glucose disulfide bond glycosylation protein expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brierley, R.A., Bussineau, C., Kosson, R., Melton, A. and Siegel, R.S. (1990) Ann. New York Acad. Sci., 589, 350–362.Google Scholar
  2. Chen, Y.L., Cino, J., Hart, G., Freedman, D., White, C.E. and Komives, E.A. (1996) Process Biochem., 32, 107–111.Google Scholar
  3. Clare, J.J., Rayment, F.B., Ballantine, S.P., Sreekrishna, K. and Romanos, M. (1991a) Bio/Technology, 9, 455–460.Google Scholar
  4. Clare, J.J., Romanos, M., Rayment, F.B., Rowedder, J.E., Smith, M.A., Payne, M.M., Sreekrishna, K. and Henwood, C.A. (1991b) Gene, 105, 205–211.Google Scholar
  5. Clore, G.M. and Gronenborn, A.M. (1997) Nat. Struct. Biol., 4, 849–853.Google Scholar
  6. Cregg, J.M., Tschopp, J.F., Stillman, C., Siegel, R., Akong, M., Craig, W.S., Buckholz, R. G., Madden, K.R., Kellaris, P.A., Davis, G.R., Smiley, B.L., Cruze, J., Torregrossa, R., Velicelebi, G. and Thill, G.P. (1987) Bio/Technology, 5, 479–485.Google Scholar
  7. Cregg, J.M., Vedvick, T.S. and Raschke, W.C. (1993) Bio/Technology, 11, 905–910.Google Scholar
  8. Fesik, S.W. and Zuiderweg, E.R.P. (1990) Q. Rev. Biophys., 23, 97–131.Google Scholar
  9. Laroche, Y., Storme, V., De Meutter, J., Messens, J. and Lauwereys, M. (1994) Bio/Technology, 12, 1119–1124.Google Scholar
  10. Lougheed, J.L., Bowman, C.A., Meininger, D.P. and Komives, E.A. (1995) Protein Sci., 4, 773–780.Google Scholar
  11. Lustbader, J.W., Birken, S., Pollak, S., Pound, A., Chait, B.T., Mirza, U.A., Ramnarain, S., Canfield, R.E. and Brown, J.M. (1996) J. Biomol. NMR, 7, 295–304.Google Scholar
  12. Meininger, D.P., Hunter, M.J. and Komives, E.A. (1995) Protein Sci., 4, 1683–1695.Google Scholar
  13. Sampoli Benitez, B., Hunter, M.J., Meininger, D.P. and Komives, E.A. (1997) J. Mol. Biol., 273, 913–926.Google Scholar
  14. Siegel, R.S. and Brierley, R.A. (1989) Biotechnol. Bioeng., 34, 403–404.Google Scholar
  15. Tschopp, J.F., Brust, P.F., Cregg, J.M., Stillman, C.A. and Gingras, T.R. (1987) Nucleic Acids Res., 9, 3859–3876.Google Scholar
  16. Venters, R.A., Calderone, T.L., Spicer, L.D. and Fierke, C.A. (1991) Biochemistry, 30, 4491–4494.Google Scholar
  17. Wegner, G.H. and Harder, W. (1987) Antonie Van Leeuwenhoek, 53, 29–36.Google Scholar
  18. White, C.E., Hunter, M.J., Meininger, D.P., White, L.R. and Komives, E.A. (1995) Protein Eng., 8, 1177–1187.Google Scholar
  19. White, C.E., Hunter, M.J., Meininger, D.P., Garrod, S. and Komives, E.A. (1996) Proc. Natl. Acad. Sci. USA, 93, 10177–10182.Google Scholar
  20. Wiles, A.P., Shaw, G., Bright, J., Perczel, A., Campbell, I.D. and Barlow, P.N. (1997) J. Mol. Biol., 272, 253–265.Google Scholar
  21. Wyss, D.F., Dayie, K.T. and Wagner, G. (1997) Protein Sci., 6, 534–542.Google Scholar
  22. Wyss, D.F., Choi, J.S., Li, J., Knoppers, M.H., Willis, K.J., Arulanandam, R.N., Smolyyar, A., Reinherz, E.L. and Wagner, G. (1995) Science, 269, 1273–1278.Google Scholar
  23. Wyss, D.F. and Wanger, G. (1996) Curr. Opin. Biotechnol., 7, 409–416.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Matthew J. Wood
    • 1
  • Elizabeth A. Komives
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of California, San DiegoLa JollaU.S.A.

Personalised recommendations