Journal of Logic, Language and Information

, Volume 8, Issue 4, pp 473–476 | Cite as

Basic Simple Type Theory, J. Roger Hindley

  • Hans-Joerg Tiede
Article
  • 93 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barendregt, H.P., 1992, “Lambda calculi with types,” pp. 117–309 in Handbook of Logic in Computer Science, S. Abramsky et al., eds., Oxford: Clarendon Press.Google Scholar
  2. Ben-Yelles, C.-B., 1979, “Type-assignment in the lambda-calculus; syntax and semantics,” Unpublished Ph.D. Thesis, Mathematics Department, University of Wales Swansea.Google Scholar
  3. Crole, R.L., 1993, Categories for Types, Cambridge: Cambridge University Press.Google Scholar
  4. Girard, J.-Y., Lafont, Y. and Taylor, P., 1989, Proofs and Types, Cambridge: Cambridge University Press.Google Scholar
  5. Hindley, J.R. and Seldin, J.P., 1986, Introduction to Combinators and λ-calculus, Cambridge: Cambridge University Press.Google Scholar
  6. Lambek, J. and Scott, P.J., 1986, Introduction to Higher Order Categorical Logic, Cambridge: Cambridge University Press.Google Scholar
  7. Mitchell, J.C., 1996, Foundations for Programming Languages, Cambridge, MA: MIT Press.Google Scholar
  8. Schwichtenberg, H., 1976, “Definierbare Funktionen im λ-Kalkül mit Typen,” Archiv für mathematische Logik und Grundlagenforschung 17, 113–114.Google Scholar
  9. Turner, R., 1997, “Types,” pp. 535–586 in Handbook of Logic and Language, J. van Benthem and A. ter Meulen, eds., Amsterdam: Elsevier.Google Scholar
  10. van Benthem, J., 1991, Language in Action, Amsterdam: North Holland.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Hans-Joerg Tiede
    • 1
  1. 1.Departments of Computer Science, Cognitive Science and LinguisticsIndiana UniversityBloomingtonU.S.A.

Personalised recommendations