Nonlinear Dynamics

, Volume 21, Issue 1, pp 3–29 | Cite as

Cellular Buckling in Long Structures

  • G.W. Hunt
  • M.A. Peletier
  • A.R. Champneys
  • P.D. Woods
  • M. Ahmer Wadee
  • C.J. Budd
  • G.J. Lord


A long structural system with an unstable (subcritical)post-buckling response that subsequently restabilizes typically deformsin a cellular manner, with localized buckles first forming and thenlocking up in sequence. As buckling continues over a growing number ofcells, the response can be described by a set of lengthening homoclinicconnections from the fundamental equilibrium state to itself. In thelimit, this leads to a heteroclinic connection from the fundamentalunbuckled state to a post-buckled state that is periodic. Under suchprogressive displacement the load tends to oscillate between twodistinct values.

The paper is both a review and a pointer tofuture research. The response is described via a typical system, asimple but ubiquitous model of a strut on a foundation which includesinitially-destabilizing and finally-restabilizing nonlinear terms. Anumber of different structural forms, including the axially-compressedcylindrical shell, a typical sandwich structure, a model of geologicalfolding and a simple link model are shown to display such behaviour. Amathematical variational argument is outlined for determining the globalminimum postbuckling state under controlled end displacement (rigidloading). Finally, the paper stresses the practical significance of aMaxwell-load instability criterion for such systems. This criterion,defined under dead loading to be where the pre-buckled and post-buckledstate have the same energy, is shown to have significance in the presentsetting under rigid loading also. Specifically, the Maxwell load isargued to be the limit of minimum energy localized solutions asend-shortening tends to infinity.

nonlinear buckling localization homoclinic heteroclinic restabilization Maxwell criterion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Champneys, A. R., Hunt, G. W., and Thompson, J. M. T. (eds.), Localization and Solitary Waves in Solid Mechanics, special issue of Philosophical Transactions of the Royal Society of London Series A 355, 1997, 2073–2213.Google Scholar
  2. 2.
    Lord, G. J., Champneys, A. R., and Hunt, G. W., ‘Computation of localized post buckling in long axially-compressed cylindrical shells’, Philosophical Transactions of the Royal Society of London Series A 355, 1997, 2137–2150 (special issue on Localization and Solitary Waves in Solid Mechanics, A. R. Champneys, G. W. Hunt, and J. M. T. Thompson (eds.).)Google Scholar
  3. 3.
    Thompson, J. M. T. and Champneys, A. R., ‘From the helix to localized writhing in the torsional post buckling of elastic rods’, Proceedings of the Royal Society of London Series A 452, 1996, 117–138.Google Scholar
  4. 4.
    Goriely, A. and Tabor, M., ‘Nonlinear dynamics of filaments III-Instabilities of helical rods’, Proceedings of the Royal Society of London Series A 453, 1997, 2583–2601.Google Scholar
  5. 5.
    Mielke, A. and Holmes, P., ‘Spatially complex equilibria of buckled rods’, Archive Rational Mechanics and Analysis 101, 1988, 319–348.Google Scholar
  6. 6.
    Hunt, G. W. and Everall, P. R., ‘Arnold tongues and mode jumping in the supercritical post-buckling of an archetypal elastic structure’, Proceedings of the Royal Society of London Series A 455, 1999, 125–140.Google Scholar
  7. 7.
    Woods, P. D. and Champneys, A. R., ‘Heteroclinic tangles in the unfolding of a degenerate Hamiltonian Hopf bifurcation’, Physica D 129, 1999, 147–170.Google Scholar
  8. 8.
    Hunt, G. W., Lord, G. J., and Champneys, A. R., ‘Homoclinic and heteroclinic orbits underlying the post-buckling of axially-compressed cylindrical shells’, Computer Methods in Applied Mechanics and Engineering 170, 1999, 239–251.Google Scholar
  9. 9.
    Hunt, G. W. and Wadee, M. A., ‘Localization and mode interaction in sandwich structures’, Proceedings of the Royal Society of London Series A 454, 1998, 1197–1216.Google Scholar
  10. 10.
    Wadee, M. A. and Hunt, G. W., ‘Interactively induced localized buckling in sandwich structures with core orthotropy’, ASME, Journal of Applied Mechanics 65, 1998, 523–528.Google Scholar
  11. 11.
    Budd, C. J. and Peletier, M. A., ‘Self-similar fold evolution under prescribed end-shortening’, SIAM Journal on Applied Mathematics, 1998, to appear. Preprint 98/08, Department of Mathematical Sciences, University of Bath.Google Scholar
  12. 12.
    Budd, C. J., Hunt, G. W., and Peletier, M. A., ‘Approximate self-similarity in models of geological folding’, Journal of Mathematical Geology, 1998, to appear. Preprint 98/13, Department of Mathematical Sciences, University of Bath.Google Scholar
  13. 13.
    Hilali, M'F., Métens, S., and Dewel, G., ‘Pattern selection in the generalised Swift-Hohenberg model’, Physical Review E 51, 1995, 2046–2052.Google Scholar
  14. 14.
    Hunt, G. W., Bolt, H. M., and Thompson, J. M. T., ‘Structural localization phenomena and the dynamical phase-space analogy’, Proceedings of the Royal Society of London Series A 425, 1989, 245–267.Google Scholar
  15. 15.
    Hunt, G. W. and Wadee, M. K., ‘Comparative Lagrangian formulations for localized buckling’, Proceedings of the Royal Society of London Series A 434, 1991, 485–502.Google Scholar
  16. 16.
    Devaney, R. L., ‘Reversible diffeomorphisms and flows’, Transactions of the American Mathematical Society 218, 1976, 89–113.Google Scholar
  17. 17.
    Buffoni, B., Champneys, A. R., and Toland, J. F., ‘Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system’, Journal of Dynamics and Differential Equations 8, 1996, 221–281.Google Scholar
  18. 18.
    Elphick, C., Tirapegui, E., Brachet, M., Coullet, P., and Iooss, G., ‘A simple global characterisation for normal forms of singular vector fields’, Physica D 29, 1987, 95–127.Google Scholar
  19. 19.
    Iooss, G. and Pérouème, M. C., ‘Perturbed homoclinic solutions in reversible 1:1 resonance vector fields’, Journal of Differential Equations 102, 1993, 62–88.Google Scholar
  20. 20.
    Dias, F. and Iooss, G., ‘Capillary-gravity interfacial waves in infinite depth’, European Journal of Mechanics B-Fluids 15, 1996, 367–393.Google Scholar
  21. 21.
    Buffoni, B. and Séré, E., ‘A global condition for quasi-random behaviour in a class of conservative systems’, Communications on Pure and Applied Mathematics 49, 1996, 285–305.Google Scholar
  22. 22.
    Devaney, R. L., ‘Homoclinic orbits in Hamiltonian systems’, Journal of Differential Equations 21, 1976, 431–438.Google Scholar
  23. 23.
    Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Y. A., Sandstede, B., and Wang, X.-J., ‘AUTO97: Continuation and bifurcation software for ordinary differential equations’, 1997. (Available by anonymous FTP from in /pub/doedel/auto.)Google Scholar
  24. 24.
    Hofer, H. and Toland, J. F., ‘On the existence of homoclinic, heteroclinic, and periodic orbits for a class of indefinite Hamiltonian systems’, Mathematische Annalen 268, 1984, 387–403.Google Scholar
  25. 25.
    Peletier, L. A. and Troy, W. C., ‘A topological shooting method and the existence of kinks of the Extended Fisher-Kolmogorov equation’, Topological Methods in Nonlinear Analysis 6, 1996, 331–355.Google Scholar
  26. 26.
    Kalies, W. D. and Vandervorst, R. A. C. M., ‘Multitransition homoclinic and heteroclinic solutions of the extended Fisher-Kolmogorov equation’, Journal of Differential Equations 131, 1996, 209–228.Google Scholar
  27. 27.
    van den Berg, J. B., ‘Uniqueness of solutions for the Extended Fisher-Kolmogorov equation’, Comptes Rendus de L'Académie des Sciences Série I 326, 1998, 447–452.Google Scholar
  28. 28.
    Gibson, L. J. and Ashby, M. F., ‘The mechanics of three-dimensional cellular materials’, Proceedings of the Royal Society of London Series A 382(1782), 1982, 43–59.Google Scholar
  29. 29.
    Gibson, L. J., Ashby, M. F., Schjaer, G. S., and Robertson, C. I., ‘The mechanics of two-dimensional cellular materials’, Proceedings of the Royal Society of London Series A 382(1782), 1982, 25–42.Google Scholar
  30. 30.
    Price, N. J. and Cosgrove, J. W., Analysis of Geological Structures, Cambridge University Press, Cambridge, 1990.Google Scholar
  31. 31.
    Johnson, A. M. and Fletcher, R. C., Folding of Viscous Layers, Columbia University Press, New York, 1994.Google Scholar
  32. 32.
    Hunt, G. W., Wadee, M. K., and Shiacolas, N., ‘Localized elasticae for the strut on the linear foundation’, ASME, Journal of Applied Mechanics 60, 1993, 1033–1038.Google Scholar
  33. 33.
    Zeeman, E. C., Catastrophe Theory: Selected Papers, 1972–1977, Addison-Wesley, Reading, MA, 1977.Google Scholar
  34. 34.
    Hunt, G. W. and Lucena Neto, E., ‘Maxwell critical loads for axially-loaded cylindrical shells’, ASME, Journal of Applied Mechanics 60(3), 1993, 702–706.Google Scholar
  35. 35.
    Thompson, J. M. T. and Hunt, G. W., A General Theory of Elastic Stability, Wiley, London, 1973.Google Scholar
  36. 36.
    Koiter, W. T., ‘On the stability of elastic equilibrium’, Ph.D. Thesis, University of Delft, 1945. English Translation: Technical Report AFFDL-TR–70–25 Air Force Flight Dynamics Laboratory, 1970.Google Scholar
  37. 37.
    Yamaki, N., Elastic Stability of Circular Cylindrical Shells, Applied Mathematics and Mechanics, Vol. 27, Elsevier, Amsterdam, 1984.Google Scholar
  38. 38.
    Lord, G. J., Champneys, A. R., and Hunt, G. W., ‘Computation of homoclinic orbits in partial differential equations: An application to cylindrical shell buckling’, SIAM Journal on Scientific Computing, 1998, to appear.Google Scholar
  39. 39.
    Lord, G. J., Peterhof, D., Sandstede, B., and Scheel, A., ‘Numerical computaton of solitary waves in semilinear elliptic problems on infinite cylinders’, SIAM Journal on Numerical Analysis, 1998, submitted.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • G.W. Hunt
    • 1
  • M.A. Peletier
    • 2
  • A.R. Champneys
    • 3
  • P.D. Woods
    • 3
  • M. Ahmer Wadee
    • 1
  • C.J. Budd
    • 4
  • G.J. Lord
    • 5
  1. 1.Department of Mechanical EngineeringUniversity of BathBathU.K.
  2. 2.Centrum voor Wiskunde en InformaticaAmsterdamThe Netherlands
  3. 3.Department of Engineering MathematicsUniversity of BristolBristolU.K.
  4. 4.Department of Mathematical SciencesUniversity of BathBathU.K.
  5. 5.National Physical LaboratoryTeddingtonU.K.

Personalised recommendations