Advertisement

Nonlinear Dynamics

, Volume 17, Issue 3, pp 205–225 | Cite as

Bifurcation Analyses in the Parametrically Excited Vibrations of Cylindrical Panels

  • A. A. Popov
  • J. M. T. Thompson
  • J. G. A. Croll
Article

Abstract

We consider parametrically excited vibrations of shallow cylindrical panels. The governing system of two coupled nonlinear partial differential equations is discretized by using the Bubnov–Galerkin method. The computations are simplified significantly by the application of computer algebra, and as a result low dimensional models of shell vibrations are readily obtained. After applying numerical continuation techniques and ideas from dynamical systems theory, complete bifurcation diagrams are constructed. Our principal aim is to investigate the interaction between different modes of shell vibrations under parametric excitation. Results for system models with four of the lowest modes are reported. We essentially investigate periodic solutions, their stability and bifurcations within the range of excitation frequency that corresponds to the parametric resonances at the lowest mode of vibration.

Shell dynamics modal interactions continuation methods Donnell equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Donnell, L. H., Beams, Plates, and Shells, McGraw-Hill, New York, 1976.Google Scholar
  2. 2.
    Timoshenko, S. P. and Gere, J. M., Theory of Elastic Stability, McGraw-Hill, New York, 1961.Google Scholar
  3. 3.
    Timoshenko, S. P. and Woinowsky-Krieger, S., Theory of Plates and Shells, McGraw-Hill, New York, 1959.Google Scholar
  4. 4.
    Wolmir, A. S., Biegsame Platten und Schalen, Verlag für Bauwesen, Berlin, 1962.Google Scholar
  5. 5.
    Volmir, A. S., Nonlinear Dynamics of Plates and Shells, Nauka, Moscow, 1972 [in Russian].Google Scholar
  6. 6.
    Bolotin, V. V., The Dynamic Stability of Elastic Systems, Holden-Day, San Francisco, 1964.Google Scholar
  7. 7.
    Nayfeh, A. H. and Balachandran, B., ‘Modal interactions in dynamical and structural systems’, Applied Mechanics Reviews 42(11), Part 2, 1989, S175‐S201.Google Scholar
  8. 8.
    Thompson, J. M. T. and de Souza, J. R., ‘Suppression of escape by resonant modal interactions: in shell vibration and heave-roll capsize’, Proceedings of the Royal Society of London A452, 1996, 2527‐2550.Google Scholar
  9. 9.
    Chin, C.-M. and Nayfeh, A. H., ‘Bifurcation and chaos in externally excited circular cylindrical shells’, Journal of Applied Mechanics 63, 1996, 565‐574.Google Scholar
  10. 10.
    Baumgarten, R. and Kreuzer, E., ‘Bifurcations and subharmonic resonances in multi-degree-of-freedom panel models’, Meccanica 31(3), 1996, 309‐322.Google Scholar
  11. 11.
    Baumgarten, R., Kreuzer, E., and Popov, A. A., ‘A bifurcation analysis of the dynamics of a simplified shell model’, Nonlinear Dynamics 12(4), 1997, 307‐317.Google Scholar
  12. 12.
    Thompson, J. M. T. and Hunt, G. W., A General Theory of Elastic Stability, Wiley-Interscience, London, 1973.Google Scholar
  13. 13.
    McLachlan, N. W., Theory and Application of Mathieu Functions, Clarendon Press, Oxford, 1947.Google Scholar
  14. 14.
    Hutchinson, J. W. and Koiter, W. T., ‘Postbuckling theory’, Applied Mechanics Reviews 23, 1970, 1353–1366.Google Scholar
  15. 15.
    Berger, M. S., ‘On the existence of equilibrium states of thin elastic shells’, Indiana University Mathematics Journal 20(7), 1971, 591‐602.Google Scholar
  16. 16.
    Allgower, E. and Georg, K., Numerical Continuation Methods, Springer-Verlag, Berlin, 1990.Google Scholar
  17. 17.
    Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.Google Scholar
  18. 18.
    Thompson, J. M. T. and Stewart, H. B., Nonlinear Dynamics and Chaos, John Wiley and Sons, Chichester, 1986.Google Scholar
  19. 19.
    Soliman, M. S. and Thompson, J. M. T., ‘Indeterminate sub-critical bifurcations in parametric resonance’, Proceedings of the Royal Society of London A438, 1992, 511‐518.Google Scholar
  20. 20.
    Soliman, M. S. and Thompson, J. M. T., ‘Indeterminate trans-critical bifurcations in parametrically excited systems’, Proceedings of the Royal Society of London A439, 1992, 601‐610.Google Scholar
  21. 21.
    Evensen, D. A., ‘Nonlinear vibrations of circular cylindrical shells’, in Thin-Shell Structures, Y. C. Fung and E. E. Sechler (eds.), Prentice-Hall, New Jersey, 1974, 133‐155.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • A. A. Popov
    • 1
  • J. M. T. Thompson
    • 1
  • J. G. A. Croll
    • 1
  1. 1.Department of Civil and Environmental EngineeringUniversity College LondonLondonU.K.

Personalised recommendations