Journal of Biomolecular NMR

, Volume 13, Issue 2, pp 187–191 | Cite as

Bicelle-based liquid crystals for NMR-measurement of dipolar couplings at acidic and basic pH values

  • Marcel Ottiger
  • Ad Bax


It is demonstrated that mixtures of ditetradecyl- phosphatidylcholine or didodecyl-phoshatidylcholine and dihexyl- phosphatidylcholine in water form lyotropic liquid crystalline phases under similar conditions as previously reported for bicelles consisting of dimyristoyl-phosphatidylcholine (DMPC) and dihexanoyl- phosphatidylcholine (DHPC). The carboxy-ester bonds present in DMPC and DHPC are replaced by ether linkages in their alkyl analogs, which prevents acid- or base-catalyzed hydrolysis of these compounds. 15N-1H dipolar couplings measured for ubiquitin over the 2.3–10.4pH range indicate that this protein retains a backbone conformation which is very similar to its structure at pH 6.5 over this entire range.

alignment bicelle dipolar coupling liquid crystal pH stability ubiquitin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10858_2004_Article_196621_MOESM1_ESM.pdf (60 kb)
Table (PDF 64 KB)


  1. Bastiaan, E.W., MacLean, C., van Zijl, P.C.M. and Bothner-By, A.A. (1987) Annu. Rep. NMR Spectrosc., 9, 35–77.CrossRefGoogle Scholar
  2. Bax, A. and Tjandra, N. (1997) J. Biomol. NMR, 10, 289–292.CrossRefGoogle Scholar
  3. Bewley, C.A., Gustafson, K.R., Boyd, M.R., Covell, D.G., Bax, A., Clore, G.M. and Gronenborn, A.M. (1998) Nat. Struct. Biol., 5, 571–578.CrossRefGoogle Scholar
  4. Clore, G.M., Starich, M. and Gronenborn, A.M. (1998) J. Am. Chem. Soc., 120, 10571–10572.CrossRefGoogle Scholar
  5. Cornilescu, G., Marquardt, J.L., Ottiger, M. and Bax, A. (1998) J. Am. Chem. Soc., 120, 6836–6837.CrossRefGoogle Scholar
  6. Emsley, J.W. and Lindon, J.C. (1975) NMR Spectroscopy using Liquid Crystal Solvents, Pergamon Press, New York, NY, U.S.A.Google Scholar
  7. Grit, M. and Cromelin, D.J.A. (1993) Chem. Phys. Lipids, 64, 3–18.CrossRefGoogle Scholar
  8. Lee, L.K., Rance, M., Chazin, W.J. and Palmer, A.G. (1997) J. Biomol. NMR, 9, 287–298.CrossRefGoogle Scholar
  9. Losonczi, J.A. and Prestegard, J.H. (1998) J. Biomol. NMR, 12, 447–451.CrossRefGoogle Scholar
  10. Ottiger, M. and Bax, A. (1998a) J. Biomol. NMR, 12, 361–372.CrossRefGoogle Scholar
  11. Ottiger, M. and Bax, A. (1998b) J. Am. Chem. Soc., 120, 12334–12341.CrossRefGoogle Scholar
  12. Ottiger, M., Delaglio, F. and Bax, A. (1998) J. Magn. Reson., 131, 373–378.CrossRefADSGoogle Scholar
  13. Ramirez, B.E. and Bax, A. (1998) J. Am. Chem. Soc., 120, 9106–9107.CrossRefGoogle Scholar
  14. Sanders, C.R. and Schwonek, J.P. (1992) Biochemistry, 31, 8898–8905.CrossRefGoogle Scholar
  15. Saupe, A. and Englert, G. (1963) Phys. Rev. Lett., 11, 462–465.CrossRefADSGoogle Scholar
  16. Tjandra, N. and Bax, A. (1997) Science 278, 1111–1114.CrossRefADSGoogle Scholar
  17. Tjandra, N., Grzesiek, S. and Bax, A. (1996) J. Am. Chem. Soc., 118, 6264–6272.CrossRefGoogle Scholar
  18. Tjandra, N., Omichinski, J.G., Gronenborn, A.M., Clore, G.M. and Bax, A. (1997) Nat. Struct. Biol., 4, 732–738.CrossRefGoogle Scholar
  19. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. and Prestegard, J.H. (1995) Proc. Natl. Acad. Sci. USA, 92, 9279–9283.CrossRefADSGoogle Scholar
  20. Vijay-Kumar, S., Bugg, C.E., Cook, W.J. (1987) J. Mol. Biol., 194, 531–544.CrossRefGoogle Scholar
  21. Wang, H., Eberstadt, M., Olejniczak, E.T., Meadows, R.P. and Fesik, S.W. (1998) J. Biomol. NMR, 12, 443–446.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Marcel Ottiger
    • 1
  • Ad Bax
    • 1
  1. 1.Laboratory of Chemical PhysicsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaU.S.A.

Personalised recommendations